An Infrastructure-less Vehicle Counting without Disruption

Jie Wu, Paul Sabatino, Jennifer Tsan, Zhen Jiang
CIS Dept., Temple University
CS Dept., West Chester University
Information Security Center, West Chester University

Presenter: Zhen Jiang
E-mail: zhen.jiang@temple.edu or zjiang@wcupa.edu
Outline

- Introduction
- Target Problem
- Challenges
- Our Approach
- Experimental Results
- Conclusion
Introduction

- Motivated by the lessons we learnt from security tragedies

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Date of Attack</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Martin</td>
<td>Killed</td>
<td>October 2, 2002, 6:04 p.m.</td>
<td>Wheaton, Maryland</td>
</tr>
<tr>
<td>James Buchanan</td>
<td>Killed</td>
<td>October 3, 2002, 7:41 a.m.</td>
<td>Rockville, Maryland</td>
</tr>
<tr>
<td>Premkumar Walekar</td>
<td>Killed</td>
<td>October 3, 2002, 8:12 a.m.</td>
<td>Aspen Hill, Maryland</td>
</tr>
<tr>
<td>Sarah Ramos</td>
<td>Killed</td>
<td>October 3, 2002, 8:37 a.m.</td>
<td>Silver Spring, Maryland</td>
</tr>
<tr>
<td>Lori Ann Lewis-Rivera</td>
<td>Killed</td>
<td>October 3, 2002, 9:58 a.m.</td>
<td>Kensington, Maryland</td>
</tr>
<tr>
<td>Pascal Charlot</td>
<td>Killed</td>
<td>October 3, 2002, 9:20 p.m.</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>Caroline Seawell</td>
<td>Survived</td>
<td>October 4, 2002, 2:30 p.m.</td>
<td>Fredericksburg, Virginia</td>
</tr>
<tr>
<td>Iran Brown</td>
<td>Survived</td>
<td>October 7, 2002, 8:09 a.m.</td>
<td>Bowie, Maryland</td>
</tr>
<tr>
<td>Dean Harold Meyers</td>
<td>Killed</td>
<td>October 9, 2002, 8:18 p.m.</td>
<td>Manassas, Virginia</td>
</tr>
<tr>
<td>Kenneth Bridges</td>
<td>Killed</td>
<td>October 11, 2002, 9:40 am</td>
<td>Fredericksburg, Virginia</td>
</tr>
<tr>
<td>Linda Franklin</td>
<td>Killed</td>
<td>October 14, 2002, 9:19 p.m.</td>
<td>Falls Church, Virginia</td>
</tr>
<tr>
<td>Jeffrey Hopper</td>
<td>Survived</td>
<td>October 19, 2002, 8:00 p.m.</td>
<td>Ashland, Virginia</td>
</tr>
<tr>
<td>Conrad Johnson</td>
<td>Killed</td>
<td>October 22, 2002, 5:55 a.m.</td>
<td>Aspen Hill, Maryland</td>
</tr>
<tr>
<td>Lori Ann Lewis</td>
<td>Survived</td>
<td>October 4, 2002, 2:30 p.m.</td>
<td>Fredericksburg, Virginia</td>
</tr>
<tr>
<td>Caroline Seawell</td>
<td>Survived</td>
<td>October 4, 2002, 2:30 p.m.</td>
<td>Fredericksburg, Virginia</td>
</tr>
</tbody>
</table>

Listed in chronological order, these are the names of the victims who were murdered or wounded in the Beltway sniper attacks.
First blast, on 2:49:43 pm EDT, April 15, 2013
Second blast, on 2:49:57 pm EDT, April 15, 2013

FBI took over the investigation ...

In the news conference at 5:20 pm on April 18, photograph of suspects are released

A few hours later, tip from Mercedes-Benz owner, which allows the police to focus their search on Watertown

At 8:42 pm, on April 19, suspect is caught!

- Residents stay indoors (Watertown, and adjacent cities and towns)
- A 20-block area was cordoned off
- Helicopters, SWAT teams in armed vehicles, go with officers door-to-door
- FBI, and other 8 departments and offices
- Entire public transit network is suspended, as well as Amtrak
- Universities, schools, local businesses, and other facilities are closed
Target Problem

- A cost-effective way to catch the target vehicle
 - Identify the exterior feature of each vehicle in coming (easy, out of our scope of this paper)
 - Complete the check of all vehicles moving in the entire area (challenging work)
Challenges

Checked or not?
Do we still need the focus there?
• Miss-counting
 ◦ Unpredictable trajectory and speed
 ◦ Unexpected parking
 ◦ No global surveillance to cover the entire area (e.g., to cover both Maryland and Virginia in Washington Sniper attack)

• Double-counting
 ◦ Unnecessary delay to converge
 ◦ Wasted time, resource, and work force
 ◦ Inaccurate information (e.g., disaster evacuation)
Our approach

- Dye in water current
 - Color changes at the frontier of wave.
Algorithm

- Seed checkpoint
 - Activated in initialization

- Active counting and labeling (at the frontier along outbound direction)
 - Except for the coming direction of activation label

- Activation of inactive checkpoint
 - Upon receiving active label

- Ending the active counting (of inbound)
 - Upon receiving active label
More complicate case

- Seed checkpoint
- Labeling
- Activation
- Ending
2 & 3 activated individually

- Seed checkpoint
- Labeling
- Activation
- Ending
Different ending time

- Seed checkpoint
- Labeling
- Activation
- Ending
Extensive adjustments for those dynamic changes along road segments

- Non-FIFO road segment
 - Surpassing (+1) or being surpassed (-1) is allowed
- Multi-targets (checked at intersections or roundabouts)
- One-way street
- Other odd traffic pattern
- Multi-seed
- Open system
 - Boundary
Experimental Results

- Daily traffic
- Different volume and speed
- Multiple lanes and overtakes
- Speed limit
- V2V unreliable communication

New York Midtown
Counting convergence vs. complete process (until retrieving counting information), maximum elapsed time.
Counting convergence vs. complete process (until retrieving counting information), minimum elapsed time
Counting convergence vs. complete process (until retrieving counting information), elapsed time on average
Counting convergence in open system, elapsed time on average

34~40% faster after a 66% speedup
Complete process in open system, elapsed time on average

34~40% faster after a 66% speedup
Summary (of experimental results)

- Counting with a fully distributed manner
- No escape, no double counting
- Scalable performance in both open and closed systems, in proportional to average vehicle speed
- No significant help from multiple seeds
- $O(\text{open}) \sim O(\text{closed})$
- $T(\text{open}) \sim T(\text{closed})$ and $T(\text{open}) > T(\text{closed})$
 - due to the delay for resuming the frontier wave at the boundary
- Accurate adjustment vs. dynamic road situations
- Correctness of the “complete status” in open system
Conclusion

- Precise counting with a fully distributed manner
- Dynamic adjustment via V2V communication, without extra infrastructure requirement
- Retrieving a global view with inconsistent local views
- Study of the impact of vehicle speed, and other factors
- A fundamental service for resource management in vehicle networks
Thank you!

- Questions and Comments