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ABSTRACT

In this paper, we present a fully distributed process to collect and distribute the min-
imal connected component (MCC) fault information so that the shortest-path between
a source and its destination can always be found in the corresponding information-based
routing via routing decisions made at each intermediate node. Considering the commu-
nication cost in the above information distribution, a more practical implementation is
provided with a low number of nodes involved in the information propagation. The ex-
perimental results show substantial improvement of our approach in terms of the success
rate in finding the shortest-path and the average path length.
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1. Introduction

In a multicomputer system, a collection of processors (or nodes) work together

to solve large application problems. These nodes communicate data and coordinate

their efforts by sending and receiving packets through the underlying communication

network. Thus, the performance of such a multicomputer system depends on the

end-to-end cost of communication mechanisms. The routing time of packets is

one of the key factors critical to the performance of multicomputers. Basically,

routing is the process of transmitting data from one node, called the source node,

to another node, called the destination node, in a given system. A routing path

from the source to the destination is determined by the forwarding node selection

at each intermediate node in a fully-distributed manner in order to make the entire

system more scalable. It is necessary to present a routing scheme that always routes

the package to the destination via the shortest-path so that the destination can be
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reached in the quickest way.

The mesh-connected topology [6, 12] is one of the most thoroughly investigated

network topologies for multicomputer systems. 2-dimensional (2-D) meshes are

lower dimensional meshes that have been commonly discussed due to structural

regularity for easy construction and high potential of legibility of various algorithms.

Some multicomputers were built based on the 2-D meshes [7, 12, 13, 15, 18, 20].

As the number of nodes in a mesh-connected multicomputer system increases, the

chance of failure also increases. The complex nature of networks also makes them

vulnerable to disturbances. Therefore, the ability to tolerate failure is becoming

increasingly important [2, 8, 9, 14, 16, 21, 22, 23, 24, 26, 27].

The shortest-path is constructed among all of the non-faulty nodes under the

existing network configuration after the failure. In the presence of node faults (link

faults can be treated as node faults by disabling the corresponding adjacent nodes),

appropriate fault information provided for routing decisions is the key to achieve the

shortest-path routing. Most existing literature uses the simplest orthogonal convex

region in the information model [2, 3, 4, 5, 10, 17, 24, 25]. To reduce the number

of non-faulty nodes contained in rectangular faulty blocks, Wang [19] proposed the

minimal connected component (MCC) model as a refinement of the rectangular

faulty block model by considering the relative locations of source and destination

nodes. The original idea is that a node will be included in an MCC only if using it

for routing will definitely make the route non-shortest. It turns out that each MCC

is of the rectilinear-monotone-polygonal shape and is the absolutely minimal fault

region in 2-D meshes. In [11], the information of each MCC is propagated along

an edge of its “forbidden region”, also known as the boundary. For each routing

case, a check of routing feasibility is conducted first at the source. It sends out two

detection messages and waits for their responses in order to ensure the existence

of a path with the Manhattan distance [1] between the source and the destination.

Then, the routing process using any existing adaptive routing scheme starts if and

only if such a path exists. The information saved along the boundary will be used

in the routing decisions at those nodes to guarantee the success of the shortest-path

routing. Such a routing that always routes the message along a Manhattan distance

path is also called Manhattan routing.

However, without global information, no existing routing scheme using localized

decisions can guarantee a shortest path when the Manhattan distance path does not

exist between the source and the destination. When the number of faults increases,

fewer routing cases will have the Manhattan distance path.

In this paper, we provide a new routing method to form a shortest path re-

gardless of whether the Manhattan distance path exists between the source and

the destination. The challenge lays in the development of an information model in

which the shortest path for any source/destination pair can be described. Moreover,

in order to make the whole system more scalable under such an information model,

no global information is used. The contributions of this paper are threefold.

(i) We provide a method of collecting and distributing the MCC information via

information exchanges among neighbors so that the shortest path for a given
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pair of a source and a destination can be determined via localized decisions.

To reduce the cost of information distribution, a practical implementation is

provided in which only a limited number of nodes along the boundaries are

involved in the information exchanges and updates.

(ii) A new routing protocol which contains multiple phases of the Manhattan

routing is provided. It can always form a shortest-path, even when the whole

Manhattan distance path (between the source and the destination) does not

exist. In this paper, we will prove that there is no path shorter than the one

found under our model.

(iii) We develop a simulation to show substantial improvement of our new approach

in the routing performance, compared with the best results known to date.

The experimental results also show that our approach is cost-effective.

To summarize, in our new approach, the MCC information will propagate not

only along the boundary presented in [11], but also into the forbidden region defined

in [11]. Therefore, the information can be used to avoid a detour in cases where the

Manhattan distance path does not exist. A routing method is proposed under this

new information model to form the shortest-path. Due to the limited effect of each

MCC, the whole routing path is partitioned into several Manhattan distance sub-

paths. Obviously, the shortest-path in each phase does not imply that the entire

path is the shortest. The success of using multiple shortest-paths distinguishes our

approach from other schemes, while in each phase any existing adaptive routing can

be applied under the guideline in [11]. Note that our new routing can always find a

Manhattan distance path between the source and the destination if it exists. Con-

sidering the cost of broadcasting in forbidden regions, a practical implementation

is proposed here. Two boundaries initialized from opposite corners of each MCC

are used to bound each forbidden region, as opposed to only one as the case in

[11] is. The information needs to be sent to a limited number of nodes along those

boundaries. Our simulation results show that the shortest-path can be achieved in

most cases, and that very few detours are needed in non-shortest-path routings.

The remainder of this paper is organized as follows. Section 2 introduces some

necessary notations and preliminaries, including the MCC model, the boundary

model, and the existing method of Manhattan routing. In the same section, the de-

tour problem in the case without a Manhattan distance path is discussed. Section 3

provides our new fault information model and the corresponding routing protocol. It

is guaranteed that this new routing method will always find the shortest-path. The

extended boundary model (which is more practical to implement) and the revised

routing protocol are also presented in this section. In Section 4, the experimental re-

sults are provided to show the quality-improvement and the cost-effectiveness of our

new shortest-path routing. Section 5 concludes the paper and provides directions

for future research.

2. Preliminary

A 2-dimensional (2-D) n× n mesh with n2 nodes has an interior node degree of

4. Nodes along each dimension are connected as a linear array. Each node u has an
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address (xu, yu), where 0 ≤ xu, yu < n. Node (xu +1, yu) is called the +X neighbor

of u. Respectively, (xu − 1, yu), (xu, yu − 1), and (xu, yu + 1) are −X , −Y and +Y

neighbors of node u. The Manhattan distance between any two nodes u and v is the

geographic distance | xu−xv | + | yu−yv |, denoted by M(u, v). Note that node s is

the source node, u is the current node, and d is the destination node. We consider

the positions of the source and destination when the new faulty components are

constructed. Without loss of generality, assume xs = ys = 0 and xd, yd ≥ 0. Due

to the effect of faulty nodes, a path with the length M(s, d) may not exist. D(s, d)

denotes the length of a shortest-path between s and d and D(s, d) ≥ M(s, d). In

general, [x : x′, y : y′] represents a rectangular region with four vertexes: (x, y),

(x, y′), (x′, y′), and (x′, y). Specifically, [x : x, y : y′]/[x : x′, y : y] represents a line

segment along the Y/X dimension.

The formation of MCC in 2-D meshes [19] is based on the notions of useless

and can’t-reach nodes. A useless node is such a node that, once a routing enters it,

the next move must occur in a −X/−Y direction, which in turn makes the routing

non-shortest. A can’t-reach node is such a node that, for a routing to enter it, a

move in the −X/−Y direction must be taken, making the routing non-shortest.

The status of faulty, useless, and can’t-reach nodes can be determined through a

labeling procedure. Initially, label all faulty nodes as faulty, and all non-faulty nodes

as safe. If a node is safe, but its +X neighbor and +Y neighbor are faulty or useless,

it is labeled useless. If the −X neighbor and −Y neighbor are faulty or can’t-reach,

such a safe node is labeled can’t-reach. The nodes are iteratively labeled until there

is no new useless or can’t-reach node. All faulty, useless, and can’t-reach nodes are

also called unsafe nodes. The other nodes are called safe nodes. Neighboring unsafe

nodes form an MCC. The labeling procedure can quickly identify the non-faulty

nodes in MCCs. Each active node collects its neighbors’ statuses, and updates its

own status. Only those affected nodes update their statuses. Figure 1 (a) shows

the idea of the definition of useless and can’t-reach nodes. Figure 1 (b) shows a

sample of MCC under the assumption that xs = ys = 0 and xd, yd ≥ 0. In this

paper, we focus on the case when the shortest-path exists. Therefore, we have the

following assumption: (a) the entire network is connected, and (b) the source and

the destination are safe nodes.

After the labeling process, a distributed process that is presented in [11] is con-

ducted to collect the shape information of each MCC and distribute it to a limited

number of nodes, also called boundaries. This process starts from an initialization

corner. An MCC with initialization-corner c is denoted by F (c). The initialization

corner is a safe node with two edge neighbors of the same MCC in the +X and +Y

dimensions. A safe node with an unsafe neighbor is called an edge node of the corre-

sponding MCC. A safe node with two edge neighbors of the same MCC in the −X

and −Y dimensions is called the opposite corner. From that initialization corner,

two identification messages, one clockwise and one counter-clockwise each carrying

partial region information, will propagate along the edges of an MCC and reach its

opposite corner. By collecting the location information of each node that these two

messages passed through, the shape of this MCC can be identified at the opposite
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Figure 1: (a) Definition of useless and can’t-reach nodes in [19]. (b) A sample
of MCC and its propagation activated at the initialization corner. (c) Identified
information re-sending.

corner (see Figure 1 (b)). After that, the propagation will continue and bring the

identified shape information F (c) back to the initialization corner (see Figure 1 (c)).

The region right below F (c) is called the forbidden region, noted by RY (c). The

region right above F (c) is called the critical region, noted by R′
Y (c). To guide the

routing process, one boundary message (also called −X boundary [11]) will carry

the information F (c), RY (c), and R′
Y (c) and propagate to all the nodes along the

line x = xc until it reaches the edge of the entire mesh. When this boundary inter-

sects with another MCC F (v), a right turn is made. After that, it will go along the

edges of F (v) to join the same boundary constructed for F (v). From the corner v,

RY (v) merges into RY (c) (RY (c) = RY (c) ∪ RY (v)) (see Figure 2 (b)). Similarly,

another boundary propagation (construction of −Y boundary [11]) carrying F (c),

RX(c), and R′
X(c) goes along y = yc (see Figure 2 (a)) and will make a left turn if

necessary. The whole procedure is shown in Algorithm 1.

Algorithm 1 [11]: Boundary construction for an MCC F (c) (B1).

1. From the initialization corner c, two identification messages (one clockwise

and one counter-clockwise) are sent along the edges of MCC until they reach

the opposite corner c′. The locations of all intermediate nodes are collected

in order to form the shape F (c) at node c′. Then, the forbidden and critical

regions (RX(c), RY (c), R′
X(c), R′

Y (c)) are identified.

2. From node c′, the propagation will continue until the identified information

reaches back to node c.

3. From node c, the triple (F (c), RX(c), R′
X(c))/(F (c), RY (c), R′

Y (c)) is prop-

agated along line y = yc / x = xc. When the propagation intersects with an-
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Figure 2: (a) Sample of MCC information propagation. (b) Sample of informa-
tion propagation with intersection and the routing decision using the corresponding
propagation information.

other MCC, say F (v), it will make a left/right turn to join the same boundary

constructed for F (v). Then, RX(v) / RY (v) will merge into RX(c) / RY (c).

Before the routing starts, a detection is activated at the source node s to en-

sure the existence of a Manhattan distance path. After that, the routing decision

at each node along the path, including the source node s, basically has two for-

warding directions: +X and +Y . The information saved along the boundaries is

used to prevent the routing from entering the forbidden region by excluding the

corresponding direction from the candidates of the forwarding direction. Then, any

fully-adaptive routing could be applied to forward the message. The procedure of

the routing decision using boundary information is listed in Algorithm 2 and can

be seen in the sample in Figure 2 (b).

Algorithm 2 [11]: Manhattan routing at the current node u with the information

of d(xd, yd)

1. Add the +X/+Y direction into the set of candidates of forwarding directions

P , if xd > 0/yd > 0 and the +X/+Y neighbor is not fault.

2. For each triple (shape information of an MCC F (c), its corresponding for-

bidden region R(c), and its corresponding critical region R′(c)) found at u,

remove the direction from P if using it will cause the routing to enter region

R(c) while d ∈ R′(c).

3. Apply any fully-adaptive routing to select a forwarding direction from set P .

4. Forward the routing message along the selected direction.
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Figure 3: (a) Detour in E-cube routing [2]. (b) Detour of routing in Algorithm 3
when it is applied to the case D(s, d) > M(s, d). (c) Extra detour.

As more faults occur in the networks, more (and bigger) MCCs will form. As a

result, we have more routing cases that are blocked by MCCs and do not have the

Manhattan distance path, i.e., D(s, d) > M(s, d). The above routing cannot find

the existing connected path due to the failure in the check of routing feasibility.

Therefore, the problem lays in finding the shortest-path when D(s, d) > M(s, d).

In E-cube routing [2], when the forwarding direction is blocked, it will detour

around the fault region to reach the other side (see in Figure 3 (a)). With this kind

of detour, the routing in Algorithm 2 can find a path from s to d when D(s, d) >

M(s, d). Therefore, the check of routing feasibility is unnecessary. The routing

process is rewritten in Algorithm 3. When such a routing intersects with an MCC,

say F (c), it will route around the fault region in the clockwise direction. In this

way, the joint boundary from the second MCC F (v) can be used to save detours

of F (v) (see Figure 3 (b)). However, this routing is not shortest-path routing.

Moreover, when the whole detour path around F (c) is inside the forbidden region

of another MCC, the routing can be blocked again and require additional detours

(see Figure 3 (c)). In the following section, we consider all the cases and propose a

new information model to help the routing achieve the shortest-path.

Algorithm 3: Routing in Algorithm 2 with E-cube routing detour (RB1), at the

current node u with the information of d(xd, yd)

1. Add +X/+Y direction into the set of candidates of forwarding directions P ,

if xd > 0/yd > 0 and the +X/+Y neighbor is neither fault nor the preceding

node.

2. Same as step 2 in Algorithm 2.

3. If P = φ (the routing is blocked by an MCC), select −X or −Y direction to

route around the MCC in clockwise direction and go to step 5.
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Figure 4: (a) A “must-take” detour. (b) A sample of complete information broad-
casting and a correct routing decision based on such information.

4. Same as step 3 in Algorithm 2.

5. Same as step 4 in Algorithm 2.

3. Fault Information Model for the Shortest-Path Routing

In this section, we introduce our method of achieving the shortest-path routing

in 2-D meshes in the presence of faults. We will prove that no path is shorter

than the one found in our routing. Considering the communication cost of the

information distribution in the above method, a practical implementation is also

provided.

In [11], it has been proved that the routing is blocked under an MCC model if and

only if the source is inside the forbidden region of one MCC while the destination

is inside its critical region (see Figure 4 (a)). To simplify the discussion, we focus

on the situation when the Manhattan routing is blocked in the +Y direction, i.e.,

s ∈ RY ∧ d ∈ R′
Y . For the remaining situation, the results can be obtained by

simply rotating the mesh. As shown in the sample in Figure 4 (a), had the detours

along the −X direction been made to node v, a shortest-path would be found in

Algorithm 3. The problem with routing that does not make such detours is the lack

of MCC information in the routing decision at the nodes inside of the forbidden

region. In our new information model, the MCC information will broadcast to all

of the nodes inside of the forbidden region so that the shortest-path can always be

found.

Simply, for a certain MCC - F (c) besides the −X boundary initialized at the

corner c - the +X boundary is initialized at the opposite corner c′ and propagated

along line y = yc′ . If necessary, it will make a left turn to join the same +X bound-

ary for another MCC F (v) at the corresponding opposite corner v′. After the joint
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point, the forbidden region of F (v) will merge into that of F (c). Figure 4 (b) shows

an example of how the +X boundary for F (c) joins that for F (c2) (= F (v)) at node

c′2 (= v). The area between these two boundaries is defined as the forbidden region

of F (c), denoted by RY (c). Obviously, it expands the original forbidden region in

[11]. When each node along the −X boundary forms its triple information, it has

only the stable information of the left bound of RY (c), which is also the path of −X

boundary construction, but does not have the information of that expanded part.

The triple is denoted by (F (c), RY−X
(c), R′

Y (c)) where RY−X
(c) refers to the left

part of the forbidden region bounded by the −X boundary and line x = xc′ . Simi-

larly, each node along the +X boundary will form a triple (F (c), RY+X
(c), R′

Y (c)),

where RY+X
(c) means the right part of the forbidden region bounded by line x = xc

and the +X boundary. Obviously, we have RY (c) = RY−X
(c)∪RY+X

(c). To obtain

the information of the other boundary and to identify RY (c), the triple formed at

a node along one boundary will be sent along the X dimension to reach the other

boundary. At each intermediate node it passes, such information will also be sent

in the +Y direction. It is noted that the determined information is used in such

broadcasting and each node will not accept duplicates from its neighbors. Eventu-

ally, at each node inside of the forbidden region RY (c), the identified information

(F (c), RY (c), R′
Y (c)) forms. The whole process of information propagation is shown

in Algorithm 4.

Algorithm 4: Complete boundary construction and information propagation for

the forbidden region RY (c) of an MCC F (c) (proposed information model B2,

replacing Algorithm 1)

1. Apply step 1 in Algorithm 1.

2. After the triple information is identified at the opposite corner c′, it will

propagate as (F (c), RY+X
(c), R′

Y (c)) to build the +X boundary with the con-

struction process of −X boundary in step 3 in Algorithm 1, but will always

make a left turn.

3. Apply step 2 in Algorithm 1.

4. Apply step 3 in Algorithm 1 to build −X boundary and form the triple

(F (c), RY−X
(c), R′

Y (c)) at each boundary node.

5. Simultaneously, the triple received at each boundary node will broadcast along

the X dimension and then in the +Y direction, until it reaches the other

boundary. For each node, we receive triples from both boundaries, and iden-

tified information (F (c), RY (c), R′
Y (c)) is formed.

Therefore, the routing decision at node s knows the existence of the blocking

MCC. According to the location and the shape of such an MCC, the detour direction

can be easily determined at node s: If M(s, c) + M(c, d)≤M(s, c′) + M(c′, d), the
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Figure 5: (a) Type-I sequence of MCC. (b) Type-II sequence of MCC.

routing detours along the −X direction. Otherwise, the +X direction detour is

taken (see Figure 4 (b)).

As indicated in [19], the Manhattan routing is usually blocked by a sequence

of MCCs, not just a single one. If the routing is blocked in the +Y direction, the

corresponding sequence (F (q1), F (q2), ..., F (qn)) is called a type-I sequence [19]

(see Figure 5). Respectively, we have a type-II sequence blocking the routing in the

+X direction. Let qi and q′i denote the initialization corner and the opposite corner

of each MCC F (qi), 1 ≤ i ≤ n, respectively. A type-I sequence can be identified by

the following properties:























(0, yq1
) ∈ F (q1) ∧ 0 < yq′

1
< yd

(xd, yqn
) ∈ F (qn) ∧ 0 < yqn

< yd

xqi
≤ xqi+1

≤ xq′

i

yq′

i
< yq′

i+1

6 ∃F (v), RY (qi) ⊂ RY (v) ⊂ RY (qi+1)

(1)

In Equation 1, the first four properties guarantee RY (qi) ⊂ RY (qi+1) for any

1 ≤ i < n. The last property guarantees that every shortest-path will be considered

for the detour around the blocking MCCs. Under our new information model with

Algorithm 4, the routing at the source s (u = s) knows the information of each

MCC of its blocking sequence when D(s, d) > M(s, d). Furthermore, it knows the

information of all MCCs that block the Manhattan distance path to the destination

d. Note that F (q1), F (q2), · · ·, F (qn) is the closest sequence, with the initialization

corner qi and the opposite corner q′i for each each F (qi) (1 ≤ i ≤ n). The routing

has three options to detour around the closest sequence in the shortest-path: (a)

through node q1, denoted by P0, (b) through node q′n, denoted by Pn, and (c)

through two consecutive MCCs, F (qi) and F (qi+1) (1 ≤ i < n), denoted by Pi.

The length of its shortest-path to the destination can be easily determined in a
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recursive function:

D(u, d) =























min0≤i≤n{Pi} the closest blocking
sequence F (q1), F (q2), · · · ,
F (qn) is found.

M(u, d) otherwise

(2)

where

Pi =















M(u, q1) +D(q1, d) i = 0
M(u, q′i) +M(q′i, qi+1) 1 ≤ i < n

+D(qi+1, d)
M(u, q′n) +D(q′n, d) i = n

(3)

After that, for the shortest-path Pi, the routing message will be forwarded to the

corresponding corner, qi+1 (0 ≤ i < n) or q′n. From that intermediate destination,

the routing will continue until the destination d is reached. The detailed multi-phase

routing is shown in Algorithm 5.

Algorithm 5: Routing at the current node u with the information of d(xd, yd)

(RB2)

1. If u = d, stop.

2. If no blocking sequence is found (with Equation 1), apply routing decision in

Algorithm 2 to forward the routing message. Otherwise, apply the following

to detour.

3. Among all the sequences found in step 1, identify the closest one (F (q1), F (q2),

· · ·, F (qn)).

4. Use Equation 2 to calculate the distance of the shortest-path D(s, d) among

the following paths: (a) through node q1, denoted by P0, (b) through node q′n,

denoted by Pn, and (c) through two consecutive MCCs (F (qi) and F (qi+1),

1 ≤ i < n), denoted by Pi.

5. If P0 / Pn is the selected shortest-path, apply routing decision in Algorithm 2

to reach the intermediate destination d′ = q1 / q′n. Otherwise, for the selected

shortest-path Pi (1 ≤ i < n), apply routing decision in Algorithm 2 to form the

Manhattan distance paths M(s, q′i) and M(q′i, qi+1) to reach the intermediate

destination d′ = qi+1.

An example is shown in Figure 6. At the source s (u = s), F (c2), F (c3),

F (c4), and F (c5) are found in the closest sequence of MCCs (F (q1), F (q2), F (q3),

and F (q4) respectively) with Equation 1. Meanwhile, the information of all MCCs

(F (c2), F (c3), F (c4), F (c5), F (c6), F (c7), F (c8), F (c9)) and their initialization /
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Figure 6: Multi-phase routing through the corner q4 of F (q4), i.e., c5 of F (c5) in
figure.

opposite corners (c2/c′2, c3/c′3, c4/c′4, c5/c′5, c6/c′6, c7/c′7, c8/c′8, and c9/c′9) can be

obtained because s is inside their forbidden regions. Initially, we have






































D(c2, d) = M(c2, d)
D(c′5, d) = M(c′5, d)
D(c6, d) = M(c6, d)
D(c7, d) = M(c7, d)
D(c8, d) = M(c8, d)
D(c9, d) = M(c9, d)
D(c′9, d) = M(c′9, d)

Then, we have














D(c3, d) = M(c3, c
′
6) + M(c′6, c7) + D(c7, d) = M(c3, d) + 1 ∗ 2

D(c4, d) = M(c4, c
′
7) + M(c′7, c8) + D(c8, d) = M(c4, c

′
8) + M(c′8, c9) + D(c9, d)

= M(c4, d) + 2 ∗ 2
D(c5, d) = M(c5, c

′
8) + M(c′8, c9) + D(c9, d) = M(c5, d) + 2 ∗ 2

By calling the recursive function in Equation 2, the shortest-path P3 to detour

around that sequence of MCCs is determined because M(s, c′4)+M(c′4, c5)+D(c5, d) =

M(s, d) + 6 is the minimum. That is, the routing will form the paths M(s, c′4) and

M(c′4, c5) to reach the intermediate destination c5. After that, by repeating the

above process at node c5, the routing will find a path to d passing nodes c′8 and c9.

The recursive function guarantees that the entire path is the shortest-path in such

a multi-phase routing. The following theorem ensures there is no path shorter than

the one found in RB2 routing.

Theorem 1: For a given pair of the safe source and the safe destination under
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MCC model, the RB2 routing in Algorithm 5 will find a path between them if such

a path exists and there is no path shorter than this one.

Proof. Assume that s and d are not disconnected by faults. If a Manhattan

distance path between s and d exists, such a path can be found easily via step 2 of

RB2 routing by applying routing decision in Algorithm 2. Otherwise, at least one

sequence of either type-I or type-II can be found between s and d. Because s and d

are safe, we cannot find both kinds of sequences. By applying the recursive function

D in Equation 2, the path that detours around such a sequence can be found via

step 5. In this way, the routing can advance in the blocking direction. Because the

distance from s and d in such a blocking direction is fixed, the multi-phase routing

will reach the node having Manhattan distance path to d and will eventually arrive

at node d.

The routing path found in Algorithm 5 only has to detour around the MCCs in

the blocking sequence(s). If a shorter path from s to d exists, such a path must pass

an active but MCC-unsafe node. Because s and d are all safe, using any node inside

an MCC will definitely cause a detour. In other words, we must have a shorter path

only using safe nodes. This contradicts with the results of Equation 2. 2

The above shortest-path routing method requires information broadcasting. To

reduce the broadcast overhead, a more practical information model is proposed for

our shortest-path routing. In this extended model, the information of each MCC

F (c) is only propagated to the boundary nodes. The propagation will be split into

two when it intersects with another MCC F (v), instead of just making a turn.

These two split propagations will route around F (v), one in the clockwise direction

and the other in the counter-clockwise direction. After that, the first one will merge

to the +X boundary for F (v) at its opposite corner v′. The second one will merge

to the −X boundary for F (v) at its initialization corner v. When this is the first

intersection of the −X boundary and xc > xv′ , at that split point, F (c) will be

identified as a candidate of the succeeding MCC of F (v) in its type-I sequence. The

relation F (v) → F (c) will also be sent by each split propagation. It is noted that

the region information, RY (c) and R′
Y (c), is only needed and forwarded by those

nodes along the −X boundary for F (c). The details of our extended information

model are shown in Algorithm 6.

Algorithm 6: Information propagation for the forbidden region RY (c) of an MCC

F (c) (extended information model B3)

1. Apply steps 1 and 2 in Algorithm 1.

2. Apply step 3 in Algorithm 1 to construct the −X boundary.

3. When the propagation intersects with another MCC, say F (v), the shape

information F (c) will be propagated in the way of the +X boundary through

its opposite corner v′ (as shown in step 2 in Algorithm 4).

4. If the above intersection is the first one of −X boundary and xc > xv′ , F (c)

might be the succeeding MCC of F (v) in a type-I sequence. Thus, the relation
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F (v) → F (c) is sent in both the above propagations (steps 2 and 3) from that

intersection.

At the initialization corner c of an MCC F (c), among all relation records received

I(c) = {F (c) → F (v)}, the succeeding MCC of F (c) in a type-I sequence, F (w),

can be determined by:
{

F (c) → F (w) ∈ I(c)
∀F (τ) ∈ {F (ζ) | F (c) → F (ζ) ∈ I(c)}, yw ≤ yτ

(4)

Based on the propagation process in Algorithm 6, a boundary node for F (c) will

obtain the same relation information as its initialization corner c does. That is, this

F (w) can also be determined at any boundary node for F (c). Therefore, at any

boundary node δ, with the information of the destination node d, a type-I blocking

sequence (F (q1), F (q2), · · ·, F (qn)) can be determined by:

F (qi) =















F (α), xα < xδ < xα′ , yδ < yα′ i = 1
the succeeding MCC of F (qi−1) i > 1
determined in Equation 4
F (β), xβ < xd < xβ′ , yβ < yd i = n

(5)

Therefore, the routing decision at boundary node δ can have the knowledge of all

the blocking sequences and the corresponding MCC shape information. By using

the same strategy in RB2 routing in Algorithm 5, the routing will find a path to

detour the blocking sequence and then reach the destination. The following theorem

shows that such a path from δ to d can be guaranteed as well as the one obtained

with Algorithm 5. The detailed routing based on our extended information model,

RB3, is shown in Algorithm 7.

Theorem 2: When the source is a boundary node, the path found in RB3 routing

in Algorithm 7 will not be longer than that found in RB2 routing in Algorithm 5.

Proof. If the Manhattan distance path exists between s and d, both Algorithm 5

and Algorithm 7 will apply the routing decision in Algorithm 2 to find it. Otherwise,

the information propagation in Algorithm 6 ensures the same blocking sequence

can be identified in Equation 1 and Equation 5. By applying Equation 2, these two

routings will find the same shortest-path. 2

Algorithm 7: Routing at the current node u with the information of d(xd, yd)

(RB3)

1. Same as step 1 in Algorithm 5.

2. With Equation 5, find the closest sequence blocking the Manhattan distance

path from u to d.

3. If such a sequence is not found, apply the routing decision in Algorithm 2 to

forward the routing message. Otherwise, apply the following detour.
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4. For each MCC F (τ) in the sequence found in the above step, with the ini-

tialization corner τ and the opposite corner τ ′, find the sequence blocking the

Manhattan distance path from τ to d or the Manhattan distance path from

τ ′ to d (with Equation 5).

5. Repeat step 3 until there is no new sequence identified.

6. Same as step 4 in Algorithm 5.

7. Same as step 5 in Algorithm 5.

As in the sample in Figure 6, s is at a boundary for MCC F (c1). With the

information collected, the closest blocking MCC F (c2) and its succeeding MCCs

F (c3), F (c4), and F (c5) can be determined as the closest blocking sequence. After

that, it is identified that no sequence blocks the path from the initialization corner

c2 to d. Meanwhile, the sequence (F (c6), F (c7), F (c8), F (c9)) blocking the path

from the initialization corner c3 to d is identified. This process will continue until

the Manhattan distance paths M(c6, d), M(c7, d), M(c8, d), M(c9, d) and M(c′9, d)

can be identified. That is, no new MCC blocks the routing path. Then, by applying

Equation 2, the distance of shortest-path D(s, d) can be determined. Furthermore,

the corresponding intermediate destination can be found and the routing message

will be forwarded along the shortest-path in multiple phases.

If node s is not on any boundary line and is inside the forbidden region of an

MCC, the above routing will miss the shortest-path in the case P0; that is, the

corresponding Algorithm 7 cannot always find the shortest path from a source to

its destination. However, if each MCC can be controlled within a certain size, the

routing will quickly reach the boundary line. That is, the number of detours is

limited and the length of routing path is very close to the minimum. Moreover,

the more MCCs that appear in the mesh, the greater our chances will be that

our routing finds the shortest-path among the remaining n cases from P1 to Pn.

Considering the communication cost saved under the extended information model,

such a sub-optimal routing using only the boundary information is preferred since

the performance is still acceptable. In the next section, we use the experimental

results to illustrate the substantial improvement of the extended information model

on communication cost in terms of the number of nodes involved in the information

propagation. Our experimental results also show the acceptable performance of

routing under the extended information model in terms of (a) the success rate of

the shortest-path routing, and (b) the relative error of the average length of routing

path to the optimal result. These results will be compared with the best results

known to date in [2] and [11].

4. Simulation

In this section, we verify the improvement of our information-based routing on

the ability of achieving the shortest-path from a simulator, compared with the best

results known to date. Such experimental results prove the effectiveness of our
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Figure 7: Network configuration under MCC model. (a) Percentage of disabled
area to the total area of the meshes, and (b) number of MCCs.
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Figure 8: Percentage of nodes involved in information propagation to the total safe
nodes in the meshes.

information models in terms of the success rate of finding a shortest-path, and the

average length of routing paths. The simulator also compares the implementation

of our information model and its extension on the number of nodes involved in the

information distribution (i.e., the cost of information model). The results show that

the routing using only boundary information is cost-effective.

This simulation is conducted on a 100×100 mesh with the number of faulty

nodes randomly generated. It is noted that when more than 3000 faults occur in

the mesh, the entire network will be disabled under the MCC model. To have a fair

comparison, we only show the results when the number of faults is no more than

3000. The simulator starts from building MCCs with a given number of random

faulty nodes. We take as many as 10,000 independent samples to determine the av-

erage MCC configuration, which is shown in Figure 7. Then, in each configuration

case, we implement the boundary information model B1[11], the proposed informa-

tion model B2, and its extension model B3. After that, we test the corresponding

routings RB1, RB2 and RB3 respectively, by randomly picking the source and des-

tination and conducting the routings 1,000 times. We assume that the source has

the path to the destination. Thus, we only conduct the test in the configurations

when the entire mesh is not disconnected by faults.

Figure 8 shows the percentage of the number of nodes involved in the information
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Figure 9: (a) Percentage of success in finding the shortest-path. (b) Relative error
of routing path achieved to the shortest-path.

propagation to the total safe nodes in the meshes in the information models B1, B2,

and B3 (i.e., cost of information models). The results show that B2 has the highest

communication cost. However, it is still not as expensive as using global information.

It is noted that when the entire mesh has up to 100 MCCs, the information only

needs to broadcast to 20% of the safe nodes. B1 has the lowest communication

cost. The results of B3 are very close to those of B1 because in most cases, the

+X boundary for one MCC shares the nodes with the −X boundaries for other

MCCs. Figure 9 (a) shows the percentage of successful shortest-path conducted in

different routings RB1, RB2 and RB3. The results show that with the information

broadcasting, the routing RB2 always achieves the shortest-path (= 100%). With

the help of only −X boundaries, the routing RB1 can successfully find the shortest-

path in more than 75% of all cases. With the information model B3 proposed in

this paper, the corresponding routing RB3 can find the shortest-path in more than

95% of all cases. However, under the B3 model, there is no need for information

broadcasting. Figure 9 (b) shows the comparison of length of routing path achieved

in each routing with the optimal result, i.e., the length of the shortest-path. It shows

that the routing RB1 will experience many detours in cases where the Manhattan

distance path does not exist. The average length of the routing path is very close

to that of E-cube routing in [2], which only requires the information of neighbors.

Under the proposed information model B2, the corresponding routing RB2 will

guarantee the shortest-path (relative error = 0). Under the proposed extension

model B3, the routing RB3 will find the shortest-path in most cases, and for those

non-shortest-path cases, the number of detours is limited. The results are very

close to the optimal ones. This figure supports our statement on the significance

of our new information model and its practical implementation on achieving the

shortest-path routing.

5. Conclusion

In this paper, we have proposed a fully-distributed process to collect and dis-

tribute MCC block information in 2-D meshes for the corresponding information-

based routing to achieve the shortest-path via multiple Manhattan routing phases.
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The use of an MCC model guarantees that there is no existing path shorter than the

one we found. A practical implementation of such an information model with a low

number of nodes involved in the information propagation along the boundary lines

is also presented. The simulation results have shown the substantial improvement

of our methods on achieving the shortest-path routing in terms of the success rate

and the average path length. In our future work, we will also extend our results to

higher dimension networks and networks with irregular topologies.
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