
CSC 472 Topics of Software Security

Kernel Exploitation
Dr. Si Chen (schen@wcupa.edu)

Class21

Page ▪ 2

Introduction

Page ▪ 3

Introduction

The kernel is also a program that:

• Manages the data I/O requirements

issued by the software

• Escaping these requirements into

instructions

• Handing them over to the CPU

Page ▪ 4

Kernel Exploitation Strategy

Page ▪ 5

Kernel Exploitation Strategy

The most common place to find vulnerabilities is inside of

Loadable Kernel Modules (LKMs).

LKMs are like executables that run in Kernel Space.

A few common uses are listed below:

> Device Drivers

> Filesystem Drivers

> Networking Drivers

> Executable Interpreters

> Kernel Extensions

> (rootkits :P)

Page ▪ 6

Kernel Exploitation Strategy

LKMs are just binary blobs like your familiar ELF’s, EXE’s

and MACH-O’s. (On Linux, they even use the ELF format)

You can drop them into GDB and reverse-engineer them

like you’re used to already.

Page ▪ 7

Kernel Exploitation Strategy

There’s a few useful commands that deal with LKMs on

Linux.

insmod ---> Insert a module into the running kernel

rmmod ---> Remove a module from the running kernel
lsmod ---> List currently loaded modules

A general familiarity with these is helpful

Page ▪ 8

Traditional UNIX credentials.

•Real User ID

•Real Group ID

Page ▪ 9

Elevate Privileges

Remember: The Kernel manages running processes

Therefore: The Kernel keeps track of permissions

Threads in Linux are treated as processes that just happen to share some resources. Each thread has its
own thread_info and its own task_struct.

Page ▪ 10

Elevate Privileges

Remember: The Kernel manages running processes

Therefore: The Kernel keeps track of permissions

Inside task_struct

Page ▪ 11

Elevate Privileges

Remember: The Kernel manages running processes

Therefore: The Kernel keeps track of permissions

https://code.woboq.org/linux/linux/include/linux/cred.h.html#cred

https://code.woboq.org/linux/linux/include/linux/cred.h.html

Page ▪ 12

Elevate Privileges

Conveniently, the Linux Kernel has two wrapper functions

for updating process credentials and generating process

credentials!

Page ▪ 13

Elevate Privileges

Now we can map out what we need to do

commit_creds(prepare_kernel_cred(0));

We can find their addresses in /proc/kallsyms

Page ▪ 14

Returning to UserSpace

Why bother returning to Userspace?

Most useful things we want to do are much easier from

userland.

In KernelSpace, there’s no easy way to:

> Modify the filesystem

> Create a new process

> Create network connections

Page ▪ 15

Returning to UserSpace

How does the kernel do it?

This will usually get you out of “Kernel Mode” safely.

Page ▪ 16

Returning to UserSpace

For exploitation, the easiest strategy is highjacking

execution, and letting the kernel return by itself.

> Function Pointer Overwrites

> Syscall Table Highjacking

> Use-After-Free

You need to be very careful about destroying Kernel state.

A segfault probably means a reboot!

Page ▪ 17

Example: Babydriver

https://github.com/ctf-wiki/ctf-challenges/tree/master/pwn/kernel

https://github.com/ctf-wiki/ctf-challenges/tree/master/pwn/kernel

Page ▪ 18

Example: Babydriver

boot.sh

rootfs.cpio

Page ▪ 19

Example: Babydriver

rootfs.cpio

init

insmod ---> Insert a module into the running kernel

Page ▪ 20

Example: Babydriver

Analysis babydriver.ko

Ghidra is a free and open source reverse engineering tool

developed by the National Security Agency. The binaries

were released at RSA Conference in March 2019; the

sources were published one month later on GitHub. Ghidra

is seen by many security researchers as a competitor to IDA

Pro and JEB Decompiler.

Page ▪ 21

Example: Babydriver

babyioctl()

babyopen()

babyread()

babyrelease()

babywrite()

Page ▪ 22

Example: Babydriver

babyioctl()

babyopen()

babyread()

babyrelease()

babywrite()

Page ▪ 23

Example: Babydriver

babyioctl()

babyopen()

babyread()

babyrelease()

babywrite()

size: 0x40

Page ▪ 24

Example: Babydriver

babydev_struct is a global variable!

Page ▪ 25

Example: Babydriver

babyioctl()

babyopen()

babyread()

babyrelease()

babywrite()

size: 0x40

babyopen: Apply for a space of 0x40
bytes, the address is stored in the
global variable
babydev_struct.device_buf

Page ▪ 26

UAF

fd1=open(/dev/babydev); → babyopen()

fd2=open(/dev/babydev); → babyopen()

close(fd1); → babyrelease()

Page ▪ 27

babydev_struct (global)

UAF

0x40babydev_struct.device_buf

babydev_struct.device_buf_len

1st:fd1=open(/dev/babydev); → babyopen();

0xffff1111

0xffff1111
0x40

2nd:fd2=open(/dev/babydev); → babyopen();

babydev_struct (global)

0x40babydev_struct.device_buf

babydev_struct.device_buf_len

0xffff1111

0xffff2222
0x40

0x40

0xffff2222

fd1

fd1

fd2

Page ▪ 28

UAF

close(fd1); → babyrelease();

babydev_struct (global)

0x40babydev_struct.device_buf

babydev_struct.device_buf_len

0xffff1111

0xffff2222
0x40

0x40

0xffff2222

The second chunk get free’d

But the pointer to that memory (babydev_struct.device_buf) still exist.

0xffff1111

0xffff2222
fd1

fd2

Page ▪ 29

UAF

ioctl(fd1, 0x10001, 0xa8); → babyioctl()

 →kfree(babydev_struct.device_buf)→kfree(0xffff2222)

babydev_struct (global)

0x40babydev_struct.device_buf

babydev_struct.device_buf_len

0xffff1111

0xffff3333
0xa8

0x40

0xffff2222

0xffff1111

0xffff2222
fd1

fd2

0xa8

0xffff3333

Page ▪ 30

UAF

close(fd1)→ babyrelease()→kfree(0xffff3333)

babydev_struct (global)

0x40babydev_struct.device_buf

babydev_struct.device_buf_len

0xffff1111

0xffff3333
0xa8

0x40

0xffff2222

0xffff1111

0xffff2222
fd1

fd2

0xa8

0xffff3333

Page ▪ 31

UAF

close(fd1)→ babyrelease()→kfree(0xffff3333)

babydev_struct (global)

0x40babydev_struct.device_buf

babydev_struct.device_buf_len

0xffff1111

0xffff3333
0xa8

0x40
0xffff2222

0xffff1111

0xffff2222
fd1

fd2

0xa8

cred_struct
for that process

0xffff3333

Page ▪ 32

UAF

close(fd1)→ babyrelease()→kfree(0xffff3333)

babydev_struct (global)

0x40babydev_struct.device_buf

babydev_struct.device_buf_len

0xffff1111

0xffff3333
0xa8

0x40
0xffff2222

0xffff1111

0xffff2222
fd1

fd2
000000000

000000000

000000000

000000000

000000000

000000000

0xffff3333

set gid,uid to 0

Page ▪ 33

Example: Babydriver

babyioctl()

babyopen()

babyread()

babyrelease()

babywrite()

First check if the length, then copy the data in
babydev_struct.device_buf to the buffer, the buffer
and the length are the parameters passed by the
user.

Similar to babyread, the difference is from the
buffer copy to the global variable

Page ▪ 34

Example: Babydriver

There is a UAF vulnerability caused by pseudo-conditional

competition.

This means that if we open both devices at the same time, the

second time will overwrite the first allocated space, because

babydev_struct is global.

Similarly, if the first one is released, then the second one is

actually released, which results in a UAF.

How do we use UAF? As mentioned before, the
cred structure can be modified to grant root to
root.

Page ▪ 35

Example: Babydriver

There is a UAF vulnerability caused by pseudo-conditional

competition.

This means that if we open both devices at the same time, the

second time will overwrite the first allocated space, because

babydev_struct is global.

Similarly, if the first one is released, then the second one is

actually released, which results in a UAF.

How do we use UAF? As mentioned before, the
cred structure can be modified to grant root to
root.

Page ▪ 36

Example: Babydriver

Plan:

• Turn on the device twice and change its size to the size of the

cred structure via ioctl

• Release one, fork a new process, then At the space of the

cred of this new process will overlap with the previously

released space

• The same time, we can write to this space through another

file descriptor, just need to change uid, gid to 0, that is, you

can achieve the right to root

Page ▪ 37

Page ▪ 38

Kernel Space Protections

By now, you’re familiar with the alphabet soup of exploit

mitigations

Green: Present in Kernel Space

Yellow: Present, with caveats

DEP

ASLR

Canaries

etc...

There’s a whole new alphabet soup for Kernel Mitigations!

Page ▪ 39

Kernel Space Protections

Some new words in our soup (There’s plenty more...)

MMAP_MIN_ADDR

KALLSYMS

RANDSTACK

STACKLEAK

SMEP / SMAP

Most of these will be off for the labs!

Page ▪ 40

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low

Memory

Malicious

Program

0xffffffff

Page ▪ 41

MMAP_MIN_ADDR

0x000000

Low

Memory

Malicious

Program

0xffffffff

This makes exploiting NULL pointer dereferences harder.

Program does mmap(0,....)

Page ▪ 42

MMAP_MIN_ADDR

▪ This makes exploiting NULL pointer dereferences harder.

▪Program does mmap(0,....)

Program writes malicious Code

0x000000

Low

Memory

Malicious

Program

0xffffffff

Page ▪ 43

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low

Memory

0xffffffff

Malicious

Program

0x000000 Program does mmap(0,....)

Program writes malicious Code

Program triggers Kernel Bug

Kernel

Memory

Page ▪ 44

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low

Memory

0xffffffff

Malicious

Program

0x000000 Program does mmap(0,....)

Program writes malicious Code

Program triggers Kernel Bug

Kernel starts executing malicious

Code

Kernel

Memory

Page ▪ 45

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low

Memory

0xffffffff

Malicious

Program

0x000000 mmap_min_addr disallows

programs from allocating low
memory.

Makes it much more difficult to

exploit a simple NULL pointer

dereference in the kernel.

Kernel

Memory

Page ▪ 46

KALLSYMS

/proc/kallsyms gives the address of all symbols in the

kernel.

We need this information to write reliable exploits without an

info-leak!

Page ▪ 47

KALLSYMS

kallsyms used to be world-readable.

Now, it returns 0’s for unprivileged users

Can still be a useful source of information on older systems

Page ▪ 48

SMEP / SMAP

SMEP: Supervisor Mode Execution Protection

Introduced in Intel IvyBridge

SMAP: Supervisor Mode Access Protection

Introduced in Intel Haswell

Page ▪ 49

SMEP / SMAP

Common Exploitation Technique: Supply your own “get

root” code.

Low

Memory

Malicious

Program

0x000000

Kernel

Memory

0xffffffff

void get_r00t() {

commit_creds(prepare_kernel_cred(0));
}

int main(int argc, char * argv) {

…

trigger_fp_overwrite(&get_r00t);

…
//trigger fp use

trigger_vuln_fp();

// Kernel Executes get_r00t
...

// Now we have root

system(“/bin/sh”);
}

Page ▪ 50

SMEP / SMAP

SMEP prevents this type of attack by triggering a page fault

if the processor tries to execute memory that has the “user”

bit set while in “ring 0”.

SMAP works similarly, but for data access in general

This doesn’t prevent vulnerabilities, but it adds considerable

work to developing a working exploit

We need to use ROP, or somehow get executable code into

kernel memory.

Page ▪ 51

Conclusion

Page ▪ 52

Q & A

	Slide 1
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Kernel Exploitation Strategy
	Slide 5: Kernel Exploitation Strategy
	Slide 6: Kernel Exploitation Strategy
	Slide 7: Kernel Exploitation Strategy
	Slide 8: Traditional UNIX credentials.
	Slide 9: Elevate Privileges
	Slide 10: Elevate Privileges
	Slide 11: Elevate Privileges
	Slide 12: Elevate Privileges
	Slide 13: Elevate Privileges
	Slide 14: Returning to UserSpace
	Slide 15: Returning to UserSpace
	Slide 16: Returning to UserSpace
	Slide 17: Example: Babydriver
	Slide 18: Example: Babydriver
	Slide 19: Example: Babydriver
	Slide 20: Example: Babydriver
	Slide 21: Example: Babydriver
	Slide 22: Example: Babydriver
	Slide 23: Example: Babydriver
	Slide 24: Example: Babydriver
	Slide 25: Example: Babydriver
	Slide 26: UAF
	Slide 27: UAF
	Slide 28: UAF
	Slide 29: UAF
	Slide 30: UAF
	Slide 31: UAF
	Slide 32: UAF
	Slide 33: Example: Babydriver
	Slide 34: Example: Babydriver
	Slide 35: Example: Babydriver
	Slide 36: Example: Babydriver
	Slide 37
	Slide 38: Kernel Space Protections
	Slide 39: Kernel Space Protections
	Slide 40: MMAP_MIN_ADDR
	Slide 41: MMAP_MIN_ADDR
	Slide 42: MMAP_MIN_ADDR
	Slide 43: MMAP_MIN_ADDR
	Slide 44: MMAP_MIN_ADDR
	Slide 45: MMAP_MIN_ADDR
	Slide 46: KALLSYMS
	Slide 47: KALLSYMS
	Slide 48: SMEP / SMAP
	Slide 49: SMEP / SMAP
	Slide 50: SMEP / SMAP
	Slide 51: Conclusion
	Slide 52

