
CSC 472 Software Security

PLT, GOT & Return-to-plt Attack
Dr. Si Chen (schen@wcupa.edu)

Class14

Page ▪ 2

Review

Page ▪ 3

Glossary of Terms

▪ Binary: A binary is the output file generated after compiling a C or C++ program. The

contents of the binary, such as functions and data, are loaded into memory with fixed

addresses during execution.

▪ Stack: The stack is a section of memory allocated for a program's execution, typically used

for storing local variables and function call information. While the stack is traditionally static,

modern operating systems can randomize its location in memory to enhance security.

▪ NX (Non-Executable): A security feature in modern operating systems that enforces the

separation of executable code and non-executable data. This prevents portions of memory

that store data from being executed as code, mitigating certain types of attacks.

▪ ROP (Return-Oriented Programming): A technique that exploits existing code fragments

(called "gadgets") within a binary to execute arbitrary commands, bypassing security

mechanisms that prevent code injection.

Page ▪ 4

Glossary of Terms

▪ libc: In dynamically linked binaries, the C standard library (libc) is not compiled directly into

the binary. Instead, the program references a shared libc file loaded into memory at runtime,

which contains implementations of standard functions like printf and malloc.

▪ ASLR (Address Space Layout Randomization): A security mechanism in modern

operating systems that randomizes the memory addresses of key components, including the

stack and libraries like libC, each time a program is executed. This makes it more difficult for

attackers to predict the location of exploitable code.

Page ▪ 5

Return-oriented programming

(ROP)

Review

Page ▪ 6

ROP: The Main Idea

Page ▪ 7

ret2libc Attack

Review

Page ▪ 8

libc

▪ C standard library

▪ Provides functionality for string handling, mathematical computations,

input/output processing, memory management, and several other

operating system services

– <stdio.h>

– <stdlib.h>

– <string.h>

By obtaining these addresses in libc, we can simplify the

exploit by reusing existing functions. One particularly useful

function is system().

→ Locate the address of the system() function.

Page ▪ 9

Ret2lib Shellcode Structure

Dummy Characters

Address for System() in libc

Address for Exit() function in libc (if you want to exit the program gracefully)

Address for Command String (“e.g. /bin/sh”)

Function Address

Return Address (Old EIP)

Arguments

Page ▪ 10

Shutdown ASLR

Shutdown ASLR (Address space layout randomization)

Page ▪ 11

Address Space Layout Randomization (ASLR)

• Address Space Layout Randomization (ASLR) is a technology used

to help prevent shellcode from being successful.

• It does this by randomly offsetting the location of modules and

certain in-memory structures.

Page ▪ 12

PLT, GOT & Return-to-plt Attack

Page ▪ 13

Bypassing ASLR/NX with Ret2PLT

Page ▪ 14

How to bypass ASLR/NX?

When ASLR has been enabled, we no longer can be sure where the libc will

be mapped at.

However, that begs the question: how does the binary know

where the address of anything is now that they are

randomized?

The answer lies in something called the Global Offset Table (GOT) and the

Procedure Linkage Table (PLT).

Page ▪ 15

Call Function(s) in libc

Page ▪ 16

Call Function(s) in libc

Page ▪ 17

ASM CALL

Call’s in ASM are ALWAYS to absolute address

How does it work with dynamic addresses for shared libraries?

Solution:

• A “helper” at static location

• In Linux: the Global Offset Table (GOT) and the

Procedure Linkage Table (PLT).(they work together in

tandem)

Page ▪ 18

Global Offset Table

• To handle functions from dynamically loaded objects, the compiler

assigns a space to store a list of pointers in the binary.

• Each slot of the pointers to be filled in is called a 'relocation' entry.

• This region of memory is marked readable to allow for the values for the

entries to change during runtime.

ret2plt.c gcc ret2plt.c -m32 -o ret2plt -no-pie -fno-stack-protector

We can take a look at the '.got' segment of the binary
with readelf.

Page ▪ 19

Global Offset Table

Let's take the read entry in the GOT as an example. If we hop onto gdb,
and open the binary in the debugger without running it, we can examine
what is in the GOT initially.

0x08048346: An address within the Procedure Linkage Table (PLT)

Page ▪ 20

Global Offset Table

If we run it and break just before the program ends, we can see

that the value in the GOT is completely different and now points

somewhere in libc.

Page ▪ 21

Procedure Linkage Table (PLT)

When you use a libc function in your code, the compiler does not

directly call that function but calls a PLT stub instead.

Let's take a look at the disassembly of the read function in PLT.

Here's what's going on here when the function is run for the first time:
1.The read@plt function is called.

2.Execution reaches the jmp instruction at address 0x804a00c, and it jumps to the memory

address stored there. This address is the GOT entry for the read function.

3.Initially, the GOT contains the address 0x08048346, so the program continues executing the

next instruction in read@plt.

4.The dynamic loader then updates the GOT with the actual address of the read function.

5.Finally, execution proceeds with the resolved address.

Page ▪ 22

Procedure Linkage Table (PLT)

Page ▪ 23

Procedure Linkage Table (PLT)

How does it work?

• Call system is actually a call to system@plt.

• The PLT resolves system@libc at runtime.

• The PLT stores the resolved address of system@libc

in system@got.

Page ▪ 24

Call System() Function in libc with PLT, GOT

Page ▪ 25

Call System() Function in libc with PLT, GOT

Page ▪ 26

Call System() Function in libc with PLT, GOT

Page ▪ 27

Lazy Binding

First time calling system()

After the first system() call
system@libc

Page ▪ 28

Bypass ASLR/NX with Ret2plt Attack

Enable ASLR (Address space layout randomization)

ret2plt.c

Page ▪ 29

Bypass ASLR/NX with Ret2plt Attack

ret2plt.c

PIE Position independent executable

http://www.wikipedia.org/wiki/Position_independent_code

Page ▪ 30

Check PLT stub Address

0x08049070

For system@plt

Page ▪ 31

Find Useable String as Parameter for System() function

The sheep are blue,

but you see red

Page ▪ 32

Find Useable String as Parameter for System() function

The sheep are blue,

but you see red

Page ▪ 33

Pwn Script

Page ▪ 34

Q & A

	Slide 1
	Slide 2
	Slide 3: Glossary of Terms
	Slide 4: Glossary of Terms
	Slide 5
	Slide 6: ROP: The Main Idea
	Slide 7
	Slide 8: libc
	Slide 9: Ret2lib Shellcode Structure
	Slide 10: Shutdown ASLR
	Slide 11: Address Space Layout Randomization (ASLR)
	Slide 12
	Slide 13: Bypassing ASLR/NX with Ret2PLT
	Slide 14: How to bypass ASLR/NX?
	Slide 15: Call Function(s) in libc
	Slide 16: Call Function(s) in libc
	Slide 17: ASM CALL
	Slide 18: Global Offset Table
	Slide 19: Global Offset Table
	Slide 20: Global Offset Table
	Slide 21: Procedure Linkage Table (PLT)
	Slide 22: Procedure Linkage Table (PLT)
	Slide 23: Procedure Linkage Table (PLT)
	Slide 24: Call System() Function in libc with PLT, GOT
	Slide 25: Call System() Function in libc with PLT, GOT
	Slide 26: Call System() Function in libc with PLT, GOT
	Slide 27: Lazy Binding
	Slide 28: Bypass ASLR/NX with Ret2plt Attack
	Slide 29: Bypass ASLR/NX with Ret2plt Attack
	Slide 30: Check PLT stub Address
	Slide 31: Find Useable String as Parameter for System() function
	Slide 32: Find Useable String as Parameter for System() function
	Slide 33: Pwn Script
	Slide 34

