
CSC 472 Software Security
Stack Overflow (2)

Dr. Si Chen (schen@wcupa.edu)

Class8

Page § 2

Review

Page § 3

Stack Frame

Page § 4

Overflow.c

Page § 5

Buffer Overflow

§ Common Unsafe C Functions

Page § 6

PEDA – Python Exploit Development Assistance for GDB

0x08048456 --> \x56\x84\x04\08
Convert to little endian format (check slides ch02.pptx):

Page § 7

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

New Return Address – Hacked()

Page § 8

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

\x56\x84\x04\08

Page § 9

Protection: ASLR, DEP, Stack Protector, PIE

-fno-stack-protector Shutdown stack protector
-z execstack Shutdown DEP (Data Execution Prevention)
-no-pie Shutdown Position-independent executable

Shutdown ASLR (Address space layout randomization)

Shutdown Protections

Page § 10

Guessing Addresses

§ Typically you need the source code so you can estimate the address of
both the buffer and the return-address.

Page § 11

Figure out the Length of Dummy Characters

§ pattern -- Generate, search, or write a cyclic pattern to memory
§ What it does is generate a De Brujin Sequence of a specified length.
§ A De Brujin Sequence is a sequence that has unique n-length

subsequences at any of its points. In our case, we are interested in
unique 4 length subsequences since we will be dealing with 32 bit
registers.

§ This is especially useful for finding offsets at which data gets written into
registers.

In terminal, type “cyclic 100” is going to generate a De Brujin
Sequence with length = 100

https://en.wikipedia.org/wiki/De_Bruijn_sequence

Page § 12

Figure out the Length of Dummy Characters

First, generate a De Bruijn sequence of length 100 and save it to a file
named 'string100'

Load the program into GDB, and when running it, pass the De Bruijn
sequence stored in the 'string100' file as input to the program.

r < string100

Page § 13

Figure out the Length of Dummy Characters

As anticipated, the program will
crash.

At this point, we can examine the 4-
byte string located inside the EIP
register (0616c6161 aka “aala”).

Because this 4-byte substring is
unique within the De Bruijn
sequence, we can readily identify
its corresponding offset by
executing the following command:

And, you can verify it by typing (in terminal not inside GDB):

Page § 14

Use Pwntools to write Python Exploit Script

Page § 15

Shellcode
Shellcode is defined as a set of instructions injected and then executed by an
exploited program. Shellcode is used to directly manipulate registers and the
functionality of a exploited program.

Page § 16

Crafting Shellcode (the small program)

Example: Hello World

hello.asm

Page § 17

Crafting Shellcode (the small program)

Example: Hello (hello.asm)

To compile it use nasm:

Use objdump to get the shellcode bytes:

Page § 18

Crafting Shellcode (the small program)

Extracting the bytes gives us the shellcode:

\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\x
b2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f

Page § 19

Test Shellcode (test.c)

Page § 20

Shellcode

§ Taking some shellcode from Aleph One's 'Smashing the Stack for
Fun and Profit'

shellcode =
("\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" +
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" +
"\x80\xe8\xdc\xff\xff\xff/bin/sh")

Page § 21

Finding a possible place to inject shellcode

Small Program

New Return Address
"\xeb\x1f\x5e\x89\x76\x08\x31\xc
0\x88\x46\x07\x89\x46\x0c\xb0\x
0b\x89\xf3\x8d\x4e\x08\x8d\x56\x
0c\xcd\x80\x31\xdb\x89\xd8\x40\
xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

Page § 22

Finding a possible place to inject shellcode

Small Program

New Return Address
"\xeb\x1f\x5e\x89\x76\x08\x31\xc
0\x88\x46\x07\x89\x46\x0c\xb0\x
0b\x89\xf3\x8d\x4e\x08\x8d\x56\x
0c\xcd\x80\x31\xdb\x89\xd8\x40\
xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

Use GDB to figure out
the memory address of
the beginning of the
buffer

Page § 23

NOP slide

Page § 24

NOP slide

§ Most CPUs have a No-Operation instruction – it does nothing but advance
the instruction pointer.

§ Usually we can put a bunch of these ahead of our program (in the string).
§ As long as the new return-address points to a NOP we are OK.

Using NOPs

Page § 25

Estimating the stack size

§ We can also guess at the location of the return address relative to the
overflowed buffer.

§ Put in a bunch of new return addresses!

Page § 26

Example: Overflow2.c

Page § 27

Find Return Address

Shellcode

Stack Address storing the Shellcode

Page § 28

Exploit Script

Page § 29

Classic Exploitation Illustration

Page § 30

Classic Exploitation Illustration

Page § 31

Classic Exploitation Illustration

Page § 32

Classic Exploitation Illustration

Page § 33

Classic Exploitation Illustration

Page § 34

Compile the code

gcc -m32 –fno-stack-protector –zexecstack –o ./overflow2 ./overflow2.c

Page § 35

No eXecute (NX)

§ -zexecstack
§ Also known as Data Execution Prevention (DEP), this protection marks

writable regions of memory as non-executable.
§ This prevents the processor from executing in these marked regions of

memory.

Page § 36

No eXecute (NX)

After the function returns, the program will set the instruction pointer
to 0xbfff0000 and attempt to execute the instructions at that address.
However, since the region of memory mapped at that address has no
execution permissions, the program will crash.

Page § 37

No eXecute (NX)

Thus, the attacker's exploit is thwarted.

Page § 38

Data Execution Prevention (DEP): No eXecute bit (NX)

NX bit is a CPU feature
– On Intel CPU, it works only on x86_64 or with Physical

Address Extension (PAE) enable

Enabled, it raises an exception if the CPU tries to
execute something that doesn't have the NX bit set

The NX bit is located and setup in the Page Table
Entry

Page § 39

Page Table

• Each process in a multi-tasking OS runs in its own memory
sandbox.

• This sandbox is the virtual address space, which in 32-bit mode
is always a 4GB block of memory addresses.

• These virtual addresses are mapped to physical memory by page
tables, which are maintained by the operating system kernel and
consulted by the processor.

• Each process has its own set of page tables.

Page § 40

Page Table

To each virtual page there corresponds one page table entry (PTE) in
the page tables, which in regular x86 paging is a simple 4-byte record
shown below:

Page § 41

Data Execution Prevention (DEP): No eXecute bit (NX)

● The last bit is the NX bit (exb)

– 0 = disabled

1 = enabled–

Page § 42

Bug à Vulnerability

§Step 1. Fine the vulnerability
– Read & read & read the code (code audit)
– Fuzz testing

• Crash
• Output some info that shouldn’t been output

Page § 43

Bug à Vulnerability

§Step 2. Control-flow Hijack
– Try to change the flow of the program

• Change the return address
• Change the function pointer, so the behavior of the will change when

called
• Change the variable, change the behavior of the function (e.g. uid =

0)

Page § 44

Bug à Vulnerability

§Step 3. Execute Payload
– Launch the attack

• Open a shell
• Read/write file/data
• Implement backdoor…

Page § 45

ELF executable

Page § 46

ELF executable for Linux

Executable and Linkable Format (ELF)

Linux Windows
ELF file .exe (PE)
.so (Shared object file) .dll (Dynamic Linking

Library)
.a .lib (static linking library)
.o (intermediate file between
complication and linking,
object file)

.obj

Page § 47

ELF executable for Linux

• ELF32-bit LSB
• Dynamically linked

Page § 48

Shared library

• ELF is loaded by ld-linux.so.2 à in charge of memory mapping,
load shared library etc..

• You can call functions in libc.so.6

Page § 49

