Class

CSC 472 Software Security

Stack & Stack Frame
Dr. Si Chen (schen@wcupa.edu)

The Stack

Stack frame details

)

12E00

13000

ESp =
-

Page = 2

Stack:

A special region of your computer's memory that stores
temporary variables created by each functions

The stack is a "LIFO" (last in, first out) data structure
Once a stack variable is freed, that region of memory
becomes available for other stack variables.

Properties:

Top .
PUSH '
POP

Bottom
EBP
<+

the stack grows and shrinks as functions push and
pop local variables

there is no need to manage the memory yourself,
variables are allocated and freed automatically
the stack has size limits

stack variables only exist while the function that
created them, is running

EBP—Pointer to data on the stack
ESP—Stack pointer

The Stack

Stack:

« A special region of your computer's memory that stores temporary variables created
by each functions

« The stack is a "LIFO" (last in, first out) data structure
« Once a stack variable is freed, that region of memory becomes available for other stack

variables.
Stack frame details Stack frame details
ESP =p output
. bhuffer

Stack Frame

Page = 4

= A stack frame is a frame of data that gets pushed onto the stack.

» [n the case of a call stack, a stack frame would represent a function call
and its argument data.

Page = 5

hello(3) \

Memory
Heap
X=0
=
=2 Stack
X=3

stack will store variables or
objects and it will call each
variable by top of stack
while returning because its
works on last in first out .

def hello(x):

if x ==
return "op"
else:

=1
Frames Objects
= 12
= hello(x - 1) Global frame function
e += 1 i hello(x)

print(s)

print(x) hello

u+=1 x |1
return e Return | _...u ‘

value op

hello

Stack frame of
function(1)

parameter of function (1)

return value of function (1)

hello(3)

parameter of function (2)

Stack frame of
function(2)

local variable of function (2)

return value of function (2)

parameter of function(3)

Stack frame of
function(3)

local variables of function (3)

return value of function (3)

Page = 6

Functions and Frames

Each function call results
) in a new frame being
< created on the stack.

frame for funci

Page =7

https://www.slideshare.net/saumilshah/how-functions-work-7776073

Functions and Frames

Each function call results
) in a new frame being
< created on the stack.

func1() m frame for func2

—

frame for funci

Page = 8

https://www.slideshare.net/saumilshah/how-functions-work-7776073

Functions and Frames

Each function call results

in a new frame being
created on the stack. m

frame for func3

funci() frame for func2

’ (1 frame for func1

Page = 9

https://www.slideshare.net/saumilshah/how-functions-work-7776073

Functions and Frames

When a function returns,
the frame is "unwound” or
"collapsed”.

| funct0 ED» ...

frame for func1

Page = 10

https://www.slideshare.net/saumilshah/how-functions-work-7776073

Functions and Frames

And as new functions get
invoked, new frames get
created.

frame for func4

m frame for func2

frame for func1

Page = 11

https://www.slideshare.net/saumilshah/how-functions-work-7776073

Stack Frame

File Edit View Terminal Tabs Help

PUSH EBP : start of the func (save current EBP to stack)
MOV EBP, ESP ; save current ESP to EBP

; function body
; no matter how ESP changes, the EBP remains unchanged

MOV ESP, EBP : move the saved function start addr back to ESP

POP EBP ; before return the func, pop the stored EBP

RETN : end of the func

-- INSERT -- 12,1 AIL

Page = 12

StackFrame.c

1 StackFrame.c +
#include

long add(long a, long b)
{
long x = a, y = b;
return (x + vy);

main(int argc, charx argv[])

long a = 1, b = 2;
printf(, add(a,b));
return 0O;

® e

& A

Page = 14

