
CSC 472 Software Security
X86 Assembly & Stack

Dr. Si Chen (schen@wcupa.edu)

Class3



Page § 2

X86 ASM



Page § 3

MOV

§ Move reg/mem value to reg/mem
– mov A, B is "Move B to A" (A=B)
– Same data size

mov eax, 0x1337 
mov bx, ax 

mov [esp+4], bl



Page § 4

MOVZX / MOVSX

§ From small register to large register
§ Zero-extend (MOVZX) / sign-extend (MOVSX)
§ Example: movzx ebx, al



Page § 5

More About Memory Access

§ mov ebx, [esp + eax * 4] Intel
§ mov (%esp, %eax, 4), %ebx AT&T
§ mov BYTE [eax], 0x0f

You must indicate the data size: BYTE/WORD/DWORD



Page § 6

ADD / SUB

§ ADD / SUB
§ Normallly "reg += reg" or "reg += imm"
§ Data size should be equal

– ADD eax, ebx

– sub eax, 123 
– sub eax, BL ; Illegal



Page § 7

INC / DEC

§ inc, dec — Increment, Decrement
§ The inc instruction increments the contents of its operand by one. 

The dec instruction decrements the contents of its operand by one.
§ Syntax

inc <reg>
inc <mem>
dec <reg>
dec <mem>

§ Examples
DEC EAX — subtract one from the contents of EAX.
INC DWORD PTR [var] — add one to the 32-bit integer stored at 
location var



Page § 8

SHL / SHR / SAR

§ Shift logical left / right
§ Shift arithmetic right
§ Common usage: SHL eax, 2 (when calculate memory address)



Page § 9

Jump

§ Unconditional jump: jmp
§ Conditional jump: je/jne

and ja/jae/jb/jbe/jg/jge/jl/jle ...
§ Sometime with ”cmp A, B” -- compare these two values and set eflags
§ Conditional jump is decided by some of the eflags bits.



Page § 10

Jump

§ ja/jae/jb/jbe are unsigned comparison
§ jg/jge/jl/jle are signed comparison



Page § 11

CMP

§ cmp — Compare
§ Compare the values of the two specified operands, setting the condition 

codes in the machine status word appropriately. This instruction is 
equivalent to the sub instruction, except the result of the subtraction is 
discarded instead of replacing the first operand. Syntax
cmp <reg>,<reg>
cmp <reg>,<mem>
cmp <mem>,<reg>
cmp <reg>,<con>

§ Example
cmp DWORD PTR [var], 10
jeq loop

§ If the 4 bytes stored at location var are equal to the 4-byte integer 
constant 10, jump to the location labeled loop.



Page § 12

General-purpose Registers

§ The eight 32-bit general-purpose data registers are used to hold 
operands for logical and arithmetic operations, operands for address 
calculations and memory pointers

4 Bytes



Page § 13

§ ## Register
§ + `esp` `ebp` `esi` `edi` - DWORD (32-bit)

§ + `sp` `bp` `si` `di` - WORD (16-bit) - rarely used

§ + \[esp, ebp\] - mark the range of stack frame

§ + esi, edi - used as buffer pointer, some instruction will directly handle esi,
edi

§ ## Other Register
§ + `eip` - Program counter, pointing to the current line

§ + `eflags` - cannot change the value directly, store the instruction result

§ + `cs` `ss` `ds` `es` `fs` `gs` - segment register



Page § 14

The Stack

Stack:
• A special region of your computer's memory that stores 

temporary variables created by each functions
• The stack is a "LIFO" (last in, first out) data structure
• Once a stack variable is freed, that region of memory 

becomes available for other stack variables.

Bottom

Top

PUSH

POP

Properties:
• the stack grows and shrinks as functions push and 

pop local variables
• there is no need to manage the memory yourself, 

variables are allocated and freed automatically
• the stack has size limits
• stack variables only exist while the function that 

created them, is running

EBP—Pointer to data on the stack 
ESP—Stack pointer

12E00

13000



Page § 15

The Stack

Stack:
• A special region of your computer's memory that stores temporary variables created 

by each functions
• The stack is a "LIFO" (last in, first out) data structure
• Once a stack variable is freed, that region of memory becomes available for other stack 

variables.



Page § 16


