
CSC 472 Software Security
Use After Free (UAF), Double Free,

Hacking Gaming Consoles

Dr. Si Chen (schen@wcupa.edu)

Class23

Page § 2

Review

Page § 3

House of Force

Unallocated
space

Top Chunk

Size = 0xxxxx

Unallocated
space

Top Chunk

Size = 0xxxxx

P0

Size = 0xxxxx

Unallocated
space

Top Chunk

Size =
0xFFFFFFFFFFFFFFFF

P0

Size = 0xxxxx

malloc p0

Overflow
and change

top chunk size

Page § 4

House of Force

Unallocated
space

Top Chunk

Size = 0xxxxx

Unallocated
space

Top Chunk

Size = 0xxxxx

P0

Size = 0xxxxx

Unallocated
space

Top Chunk

Size =
0xFFFFFFFFFFFFFFFF

P0

Size = 0xxxxx

malloc p0

Overflow
and change

top chunk size

• This attack assumes an overflow into the top chunk's header.
The size is modified to a very large value (-1 in this example).

• This ensures that all initial requests will be services using the
top chunk, instead of relying on mmap.

• On a 64 bit system, -1 evaluates to 0xFFFFFFFFFFFFFFFF.
• A chunk with this size can cover the entire memory space of the

program.

Page § 5

House of Force

E.g. top_chunk=0x601200

malloc(0xffe00030)

0xffe00030 < top_chunk_size

0xffe00030+0x601200=0x100401230

top_chunk=0x401230

Page § 6

House of Force

§ Prerequisites: Three malloc calls are required to successfully apply house
of force as listed below:
– Malloc 1: Attacker should be able to control the size of top chunk. Hence heap

overflow should be possible on this allocated chunk which is physically located
previous to top chunk.

– Malloc 2: Attacker should be able to control the size of this malloc request.
– Malloc 3: User input should be copied to this allocated chunk.

Page § 7

Metadata Corruption -- Unlink, House of Force

§ Metadata corruption based exploits involve corrupting heap metadata in
such a way that you can use the allocator’s internal functions to cause a
controlled write of some sort

§ Generally involves faking chunks, and abusing its different coalescing or
unlinking processes

Page § 8

Use After Free

§ Use After Free
– A class of vulnerability where data on the heap is freed, but a leftover reference

or ‘dangling pointer’ is used by the code as if the data were still valid
– Most popular in Web Browsers, complex programs
– Also known as UAF

Page § 9

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 10

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 11

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 12

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 13

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

§Dangling Pointer
– A left over pointer in your code that references free’d data and is prone

to be re-used
– As the memory it’s pointing at was freed, there’s no guarantees on what

data is there now
– Also known as stale pointer, wild pointer

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 14

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 15

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 16

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 17

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

§You actually don’t need any form of memory
corruption to leverage a use after free

§It’s simply an implementation issue
– pointer mismanagement

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 18

Use After Free: PoC Example

Page § 19

Use After Free: PoC Example

Page § 20

Use After Free

The ‘hot’ vulnerability nowadays, almost every
modern browser exploit leverages a UAF

Page § 21

Use After Free

§From the defensive perspective, trying to detect use after free
vulnerabilities in complex applications is very difficult, even
in industry

§Why?
– UAF’s only exist in certain states of execution, so statically scanning

source for them won’t go far
– They’re usually only found through crashes, but symbolic execution

and constraint solvers are helping find these bugs faster

Page § 22

Double Free

§ Double Free
– Freeing a resource more than once can lead to memory leaks.
– The allocator's data structures get corrupted and can be exploited by an

attacker.

Page § 23

Page § 24

Game Consoles

• Evolving entertainment platforms

– Play games, stream media, browse the web

• 100% consistent machine for developers

– Don’t have to account for different specs (eg. PC’ s)

• Enforces DRM much better than PC’s can

– It’s a controlled platform that only runs code as blessed by Sony, Microsoft,

Nintendo

Page § 25

Xbox 360 – Nov. 2005

Page § 26

Xbox 360 – Nov. 2005

• Security Perspective

– Only runs signed code or executables

– Rigorous chain of trust, secure bootstrapping

– Encrypted runtime memory

– eFuses to enforce updates (these are awesome)

– NX/DEP

– No ASLR

Page § 27

KING KONG EXPLOIT
updates don’t always patch bugs, sometimes they introduce them

Page § 28

King Kong Exploit – Dec. 2006

• Integer based bug, resulting in code execution at
the Hypervisor context

– Complete system control

• The bug leveraged by the King Kong Exploit was
INTRODUCED in kernel version 4532, and
patched two updates later in v4552

– For reference, the Xbox 360 shipped on v1888

Page § 29

About the Xbox 360 & Games

• All executables (.XEX’s) are signed by
Microsoft which the system verifies to
prevent tampering with code

• Data assets such as textures, models,
shaders, and audio as used by games
are NOT signed!

– Find bugs in game asset parsers

Page § 30

Stage One: King Kong’s Role

• A maliciously crafted unsigned shader file parsed by the signed King Kong
game XEX, can lead to unprivileged code execution on the system

• King Kong was one of many possible memory corruption vectors that could
have been used to get basic code exec

Page § 31

About the Xbox 360 Hypervisor

• A small Hypervisor (Hv) sits next
to the kernel, near the top of
memory

• The Hv handles some crypto keys,
low level IO, memory
encryption/decryption operations
and more

• If you can take over the Hv, you
have access to physmem and the
highest privilege of execution

Physical Memory

Game Code

Kernel

Hypervisor

0x00000000

0xFFFFFFFF

Page § 32

• The PPC instruction ‘sc’ is
used to make system calls
on the Xbox 360, the Hv
handles these calls as they
are made

• Unfortunately, along came
a bug in the syscall handler
):

Page § 33

Pseudocode of the Hv Bug

int syscall_handler(uint64_t syscall_num, ...)
{

/* check for invalid syscall */
if((uint32_t)syscall_num > 0x61)

return 0;

/* call the respective syscall func */
syscall_table[syscall_num](...);
...

Page § 34

The Oops

• Only the lower 32 bits of
the syscall number are
sanity checked

• The whole 64 bit number
is used in address
calculation

syscall_table[syscall_num](...);

Arbitrary jump into userland
memory/code at the HV Context

Physical Memory

Game Code
(Userland Memory)

Kernel

Hypervisor

0x00000000

0xFFFFFFFF

Page § 35

Game Over

Page § 36

XBOX 360 HARDWARE ATTACKS
Straying from binary exploitation, but still interesting

Page § 37

SMC / JTAG Hack – 2007-2009

• Uses the SMC and JTAG to trigger a DMA overwrite
instantly at bootup rather than having to load a game
such a King Kong

• Cat and mouse for a few years, allowing hackers to boot
into downgraded, exploitable kernels (eg v4532)

• Eventually Patched by MS when they decided to rework
the boot process

Page § 38

SMC / JTAG Hack

Page § 39

Reset Glitch Hack (RGH) – Aug. 2011

• There’s some hash checks that expect a 0 to
be returned for a good hash, or 1 for a hash
mismatch (fail)

• Sending a specific reset signal down a pin on
the CPU clears the CPU registers

• Reset the registers as the hash check returns

Page § 40

Xbox 360 Reset Glitch Hack (RGH)

Page § 41

Nintendo 3DS – Feb. 2011

Page § 42

Nintendo 3DS – Feb. 2011

• Security Perspective
– Very tightly sealed bootrom, hardware disabled
– Only runs signed code or executables
– Hardware based keyscrambler for crypto keys
– NX/DEP (Only used on the ARM11 Core)
– Runtime memory is not encrypted
– Has eFuses, not really used
– No ASLR

Page § 43

Nintendo 3DS Architecture

PXI

App Processor – ARM11

Micro Kernel

Games / Apps

Security Processor – ARM9

Micro Kernel

PROCESS9

Page § 44

PWNING OVER THE PXI
Owning the SysCore through the PXI

Page § 45

VerifyRsaSha256() – Jun. 2013

• Straight stack smash bug, results in code
execution on the Security Processor (ARM9)
– Complete system control

• Present from firmware version 1.0.0 – 4.5.0
• Bug discovered in 2012

Page § 46

Stage One: ARM11 Code Exec

• A stack smash exists in
the DS Profile fields in the
native settings application
on all 3DS’s at the time.
No need for any games!

• This is a straight stack
smash that will get us
control, but there is DEP
on the ARM11 so you
must ROP

Page § 47

State of Control

PXI

App Processor – ARM11

Micro Kernel

Games / Apps

Security Processor – ARM9

Micro Kernel

PROCESS9

We have at least basic code exec
through ROP on the ARM11

Page § 48

TAKING OVER THE ARM9

Page § 49

Malicious PXI Requests

PXI

App Processor – ARM11

Micro Kernel

Games / Apps

Security Processor – ARM9

Micro Kernel

PROCESS9

We have at least basic code exec
through ROP on the ARM11

Page § 50

Malicious PXI Requests

PXI

App Processor – ARM11

Micro Kernel

Games / Apps

Security Processor – ARM9

Micro Kernel

PROCESS9

Exploit PXI handlers
on the ARM9 side!

We have at least basic code exec
through ROP on the ARM11

Page § 51

Pseudocode of the ARM9 Bug

int ps_VerifyRsaSha256(RSA_SIG * sig)
{

RSA_SIG localsig; // 0x208 byte sig object on stack
memset(localsig, 0, sizeof(RSA_SIG));

/* copy the RSA signature into a local sig object */
memcpy(localsig.sigbuf, sig->sigbuf, sig->sigsize);

...

return result;
}

Page § 52

Pseudocode of the ARM9 Bug

Attacker Controlled
Data

int ps_VerifyRsaSha256(RSA_SIG * sig)
{

RSA_SIG localsig; // 0x208 byte sig object on stack
memset(localsig, 0, sizeof(RSA_SIG));

/* copy the RSA signature into a local sig object */
memcpy(localsig.sigbuf, sig->sigbuf, sig->sigsize);

...

return result;
}

Page § 53

VerifyRsaSha256() – Jun. 2013

• Bug is basically a memcpy with user controlled
data, and a user specified size

• No DEP or ASLR on the ARM9, simply overwrite
return address and jump onto your buffer! (:

• With control of the ARM9 you can do anything
– Load a custom firmware & soft reboot the system

Page § 54

Page § 55

Owning the 3DS

• Code exec on the ARM11 is easy
– Tons of crappy vulnerable games everywhere, less

exciting exploits exist to do this

• Owning the ARM9 is much harder
– Limited attack surface with little user input

Page § 56

PlayStation 3 – Nov. 2006

Page § 57

PlayStation 3 – Nov. 2006

• Security Perspective
– FreeBSD Based OS
– Only runs signed code or executables
– Rigorous chain of trust, secure

bootstrapping
– Cell Architecture

• Isolates cores from each other, HV
• Dedicated System / Security Cell

– Encrypted runtime memory
– Encrypted HDD
– eFuses
– NX/DEP
– No ASLR

Page § 58

Page § 59

Page § 60

GeoHot hacks PS3 Hv – Jan. 2010

• Through OtherOS (Linux
on PS3) and chip glitching,
GeoHot owns the PS3
Hypervisor

• Glitching ‘creates’ a use
after free (UAF) scenario
in the Hypervisor that is
then exploited to get
code exec

• Dumps of PS3 HV & kernel
make their way public

Page § 61

GeoHot

M
ore

Privileged

Page § 62

Sony Disables OtherOS – Mar. 2010

Page § 63

PS3 Jailbreak – Aug. 2010

• With the PS3 Kernel (LV2) dumped, heap overflow found in USB handling

during startup while the system searches for a service jig

• The main bug is an overflow in long device descriptors that leads to
memory corruption on the heap

• Results in control of the LV2

Page § 64

PS3 Jailbreak – Aug. 2010

Page § 65

PS3 Jailbreak – Aug. 2010

• Heap overflow setup and triggered through a USB hub (oops) and six USB’s

• It’s a bit like musical chairs, plugging and unplugging a number of USB’s to
malloc/free stuff – everyone just emulates this process with a single USB

Page § 66

PS3 Jailbreak

M
ore

Privileged

Page § 67

PS3 ECDSA KEY EXTRACTION
Largest console break of this generation stems from crypto flaw

Page § 68

PS3 ECDSA Key Extraction – Jan. 2011

• Executables running on
the PS3 are modified ELF’
s known as SELF’s

• Signed by Sony’s ECDSA
Key, encrypted by the
associated Lv(0,1,2) keys
– Elliptic Curve Digital

Signature Algorithm

EL
F

Page § 69

PS3 ECDSA Key Extraction – Jan. 2011

• With control of the LV2, you can make crypto requests

to the security SPE and use it as a black box

• A crypto implementation flaw is uncovered by
fail0verflow regarding Sony’s ECDSA signatures

Page § 70

Page § 71

Elliptic Curve Cryptography

Page § 72

Const Instead of Nonce

Page § 73

Effects of Missteps

• With only TWO signatures from the Crypto SPE,
you can compute Sony’s Private ECDSA Key

• With the ECDSA Key, the floodgates are
opened
– You can sign anything as Sony
– This key is embedded in hardware

Page § 74

Page § 75

metldr Owned

• Geohot releases metldr decryption keys

Page § 76

GeoHot

M
ore

Privileged

Page § 77

Sony Nukes metldr

Page § 78

Sony Sues Geohot – Jan. 2011

Page § 79

O
W

N
ED

M
ore

Privileged

Page § 80

Owning the lv0

• metldr is gone, so you need to own the lv0

• lv0 blobs can be signed, but they’re encrypted
and we don’t have the keys to decrypt them

• What do you do?????

Page § 81

Owning the lv0

• metldr is gone, so you need to own the lv0

• lv0 blobs can be signed, but they’re encrypted and we
don’t have the keys to decrypt them

• What do you do?????
– Sign random data blobs, and hope the instruction at the entry

point ‘decrypt’ to a jmp/call to code that you control

Page § 82

lv0 Owned – Oct. 2012

• Trying randomly signed blobs eventually
works and execution is achieved at level of lv0

Page § 83

You are Here M
ore

Privileged

Page § 84

lv0 Owned – Oct. 2012

• Decryption keys are retrieved as lv0. Now you
can create meaningful lv0 blobs, encrypt
them, and sign them

• bootldr also exploited and dumped for fun
– Not updateable anyway, so it doesn’t matter

much

Page § 85

Page § 86

PS3 Aftermath

• Sony drops lawsuit against Geohot
– Must never hack Sony products again

• No more updateable seeds of trust exist on
the PS3 that Sony can utilize
– PS3 totally broken

Page § 87

Page § 88

Introduction

Page § 89

Introduction

Page § 90

Introduction

Page § 91

Introduction

The kernel is also a program that:
• Manages the data I/O requirements

issued by the software
• Escaping these requirements into

instructions
• Handing them over to the CPU

Page § 92

Ring Model

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Page § 93

Ring Model

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Ring 1 and Ring 2 are not utilized by
most popular/modern Operating
Systems (Linux / Windows / OSX)

Page § 94

Ring Model

Page § 95

Ring Model

Page § 96

“Matrix”

Page § 97

Kernel Pwning

Page § 98

Jailbreak Game Console

Page § 99

Kernel Basics

Page § 100

Kernel Basics

Page § 101

Kernel Exploitation Strategy

Page § 102

Kernel Exploitation Strategy

You already know how to find these!

Kernel vulnerabilities are almost exactly the same as
userland vulnerabilities.

1. Stack Overflows
2. Heap Overflows

By now, finding these should be a familiar process

Page § 103

Kernel Exploitation Strategy

§ Monolithic Kernel
– Monolithic kernel is a single large processes running entirely in a single address

space. It is a single static binary file. All kernel services exist and execute in
kernel address space. The kernel can invoke functions directly.

LKMs

Page § 104

Kernel Exploitation Strategy

The most common place to find vulnerabilities is inside of
Loadable Kernel Modules (LKMs).

LKMs are like executables that run in Kernel Space.
A few common uses are listed below:

> Device Drivers
> Filesystem Drivers
> Networking Drivers
> Executable Interpreters
> Kernel Extensions
> (rootkits :P)

Page § 105

Kernel Exploitation Strategy

LKMs are just binary blobs like your familiar ELF’s, EXE’s
and MACH-O’s. (On Linux, they even use the ELF format)

You can drop them into GDB and reverse-engineer them
like you’re used to already.

Page § 106

Kernel Exploitation Strategy

There’s a few useful commands that deal with LKMs on
Linux.

insmod ---> Insert a module into the running kernel
rmmod ---> Remove a module from the running kernel
lsmod ---> List currently loaded modules

A general familiarity with these is helpful

Page § 107

Kernel Exploitation Strategy

Page § 108

Kernel Functions

§ fr

free() kfree()
(slab/slub allocator)

Page § 109

Kernel Debugging

Page § 110

Kernel Debugging

Page § 111

Kernel Debugging

Page § 112

Traditional UNIX credentials.

•Real User ID
•Real Group ID

Page § 113

Elevate Privileges

Remember: The Kernel manages running processes

Therefore: The Kernel keeps track of permissions

https://code.woboq.org/linux/linux/include/linux/cred.h.html#cred

https://code.woboq.org/linux/linux/include/linux/cred.h.html

Page § 114

Elevate Privileges

Conveniently, the Linux Kernel has two wrapper functions
for updating process credentials and generating process
credentials!

Page § 115

Elevate Privileges

Now we can map out what we need to do

commit_creds(prepare_kernel_cred(0));

We can find their addresses in /proc/kallsyms

Page § 116

Returning to UserSpace

Why bother returning to Userspace?

Most useful things we want to do are much easier from
userland.

In KernelSpace, there’s no easy way to:

> Modify the filesystem
> Create a new process
> Create network connections

Page § 117

Returning to UserSpace

How does the kernel do it?

This will usually get you out of “Kernel Mode” safely.

Page § 118

Returning to UserSpace

For exploitation, the easiest strategy is highjacking
execution, and letting the kernel return by itself.

> Function Pointer Overwrites
> Syscall Table Highjacking
> Use-After-Free

You need to be very careful about destroying Kernel state.

A segfault probably means a reboot!

Page § 119

Example: Babydriver

https://github.com/ctf-wiki/ctf-challenges/tree/master/pwn/kernel

https://github.com/ctf-wiki/ctf-challenges/tree/master/pwn/kernel

Page § 120

Page § 121

Kernel Space Protections

By now, you’re familiar with the alphabet soup of exploit
mitigations

Green: Present in Kernel Space
Yellow: Present, with caveats

DEP
ASLR
Canaries
etc...

There’s a whole new alphabet soup for Kernel Mitigations!

Page § 122

Kernel Space Protections

Some new words in our soup (There’s plenty more...)

MMAP_MIN_ADDR
KALLSYMS
RANDSTACK
STACKLEAK
SMEP / SMAP

Most of these will be off for the labs!

Page § 123

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low
Memory

Malicious
Program

0xffffffff

Page § 124

MMAP_MIN_ADDR

0x000000

Low
Memory

Malicious
Program

0xffffffff

This makes exploiting NULL pointer dereferences harder.

Program does mmap(0,....)

Page § 125

MMAP_MIN_ADDR

§ This makes exploiting NULL pointer dereferences harder.

§Program does mmap(0,....)

Program writes malicious Code

0x000000

Low
Memory

Malicious
Program

0xffffffff

Page § 126

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 Program does mmap(0,....)

Program writes malicious Code

Program triggers Kernel Bug

Kernel
Memory

Page § 127

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 Program does mmap(0,....)

Program writes malicious Code

Program triggers Kernel Bug

Kernel starts executing malicious
Code

Kernel
Memory

Page § 128

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 mmap_min_addr disallows
programs from allocating low
memory.

Makes it much more difficult to
exploit a simple NULL pointer
dereference in the kernel.

Kernel
Memory

Page § 129

KALLSYMS

/proc/kallsyms gives the address of all symbols in the
kernel.

We need this information to write reliable exploits without an
info-leak!

Page § 130

KALLSYMS

kallsyms used to be world-readable.

Now, it returns 0’s for unprivileged users

Can still be a useful source of information on older systems

Page § 131

SMEP / SMAP

SMEP: Supervisor Mode Execution Protection

Introduced in Intel IvyBridge

SMAP: Supervisor Mode Access Protection

Introduced in Intel Haswell

Page § 132

SMEP / SMAP

Common Exploitation Technique: Supply your own “get
root” code.

Low
Memory

Malicious
Program

0x000000
Kernel

Memory

0xffffffff

void get_r00t() {
commit_creds(prepare_kernel_cred(0));

}

int main(int argc, char * argv) {
…
trigger_fp_overwrite(&get_r00t);
…
//trigger fp use
trigger_vuln_fp();
// Kernel Executes get_r00t
...
// Now we have root
system(“/bin/sh”);

}

Page § 133

SMEP / SMAP

SMEP prevents this type of attack by triggering a page fault
if the processor tries to execute memory that has the “user”
bit set while in “ring 0”.

SMAP works similarly, but for data access in general

This doesn’t prevent vulnerabilities, but it adds considerable
work to developing a working exploit

We need to use ROP, or somehow get executable code into
kernel memory.

Page § 134

Conclusion

Page § 135

