s 2 3

CSC 472 Software Security
lise After Free (LUAF), Double Free,

Hacking Gaming Consoles

Dr. Si Chen (schen@wcupa.edu)

Review

Page = 2

House of Force

Overflow
and change
malloc p0 top chunk size

=

House of Force

« This attack assumes an overflow into the top chunk's header.
The size is modified to a very large value (-1 in this example).

« This ensures that all initial requests will be services using the
top chunk, instead of relying on mmap.

 On a 64 bit system, -1 evaluates to OxFFFFFFFFFFFFFFFF.

* A chunk with this size can cover the entire memory space of the
program.

Overflow
and change

malloc p0 top chunk size

"3

Page = 4

E.g. top_chunk=0x601200

- TopChunk
malloc(0xffe00030) t ,

l
Oxffe00030 < top chunk_size
Oxffe00030+0x601200=0x100401230 | - ==taaas
top_chunk=0x401230
PO

Size = Oxxxxx

Size =
OxFFFFFFFFFFFFFFFF

Page = 5

House of Force

» Prerequisites: Three malloc calls are required to successfully apply house
of force as listed below:

— Malloc 1: Attacker should be able to control the size of top chunk. Hence heap
overflow should be possible on this allocated chunk which is physically located
previous to top chunk.

— Malloc 2: Attacker should be able to control the size of this malloc request.
— Malloc 3: User input should be copied to this allocated chunk.

Page = 6

Metadata Corruption -- Unlink, House of Force

» Metadata corruption based exploits involve corrupting heap metadata in
such a way that you can use the allocator’s internal functions to cause a
controlled write of some sort

» Generally involves faking chunks, and abusing its different coalescing or
unlinking processes

*(buffer-2) *(buffer-1)

Page = 7 [l

Use After Free

= Use After Free

— A class of vulnerability where data on the heap is freed, but a leftover reference
or ‘dangling pointer’ is used by the code as if the data were still valid

— Most popular in Web Browsers, complex programs
— Also known as UAF

Page = 8

Use After Free

<& 0x00000000

()]
=
o
=
n
+
o
=
Q
S
Q
n

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\'4

<— OXFFFFFFF

Page = 9

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

<€ 0x00000000

()
3
o
=
n
+t
o
=
Q
3
Q
n

<— OXFFFFFFF

Page = 10

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

<€ 0Xx00000000

()
S
o
=
n
~+
o
=
o)
S
Q
0n

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\'4

<— OXFFFFFFF

West
Chester,
University

Page = 11

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

0x00000000

o
>
o
=
n
+
o
=
Q
3
Q.
n
-
[—r
0Q
-
M
B
=
M
=
O
3
<

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
1
I
I
I
I
I
I
\'4

OXFFFFFFF

Page = 12

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

» Dangling Pointer
— A left over pointer in your code that references free’d data and is prone
to be re-used

— As the memory it's pointing at was freed, there’s no guarantees on what
data is there now

— Also known as stale pointer, wild pointer

ty
Page = 13 []i i
http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf ||@ﬂ

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

o
=)
o)
=
n
+
o
=
Q
S
Q.
n

|
|
I
|
I
|
|
|
|
I
|
I
I
|
I
|
I
|
|
I
|
|
I
|
I
|
|
|
I
I
|
I
I
\'4

<— OXFFFFFFF

West
Chester
University

1
[l
http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf ||%!!

Page = 14

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

<& 0XxX00000000

()]
S
)
=
n
+
o
=
Q
S
Q
n

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
|
I
|
I
I
I
I
\'4

<— OXFFFFFFF

Page = 15

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

o
=
o
=
n
+
o
=
Q
—
Q.
n

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\'4

<— OXFFFFFFF

Page = 16

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

*You actually don’'t need any form of memory
corruption to leverage a use after free

"|lt's simply an implementation issue

— pointer mismanagement

ty
Page = 17 []i i,
http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf ||@ﬂ

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free: PoC Example

3 int main()

4

char *pl;
pl = (char *)malloc(s:
memcpy (p1, ’

printf(

free(pl);

char *p2;

p2 = (char *)malloc(si
memcpy (p2, ' '
printf(

memcpy (pl,

printf(

Page = 18

Use After Free: PoC Example

int main()

4 {

char *pl;

pl = (char *)malloc(size
memcpy (p1, , 10);
printf(6X
free(pl);

char *p2;

p2 = (char *)malloc(
memcpy (p2, ’
printf(’
memcpy (pl,

printf

’

-» heap ./uaf

P1 address:55756260, hello
P2 address:55756260, hello
P2 address:55756260, hack!

Use After Free

Search Results
|There are 3263 CVE entries that match your search.

Name Description
CVE-2019-9821 A use-after-free vulnerability can occur in AssertWorkerThread due to a race condition with shared workers. This results in a potentially
exploitable crash. This vulnerability affects Firefox < 67.
CVE-2019-9820 A use-after-free vulnerability can occur in the chrome event handler when it is freed while still in use. This results in a potentially exploitable
crash. This vulnerability affects Thunderbird < 60.7, Firefox < 67, and Firefox ESR < 60.7.
CVE-2019-9818 A race condition is present in the crash generation server used to generate data for the crash reporter. This issue can lead to a use-after-free in

the main process, resulting in a potentially exploitable crash and a sandbox escape. *Note: this vulnerability only affects Windows. Other
operating systems are unaffected.*. This vulnerability affects Thunderbird < 60.7, Firefox < 67, and Firefox ESR < 60.7.

CVE-2019-9796 A use-after-free vulnerability can occur when the SMIL animation controller incorrectly registers with the refresh driver twice when only a single
registration is expected. When a registration is later freed with the removal of the animation controller element, the refresh driver incorrectly
leaves a dangling pointer to the driver's observer array. This vulnerability affects Thunderbird < 60.6, Firefox ESR < 60.6, and Firefox < 66.

CVE-2019-9790 A use-after-free vulnerability can occur when a raw pointer to a DOM element on a page is obtained using JavaScript and the element is then
removed while still in use. This results in a potentially exploitable crash. This vulnerability affects Thunderbird < 60.6, Firefox ESR < 60.6, and
Firefox < 66.

CVE-2019-9767 Stack-based buffer overflow in Free MP3 CD Ripper 2.6, when converting a file, allows user-assisted remote attackers to execute arbitrary code
via a crafted .wma file.

CVE-2019-9766 Stack-based buffer overflow in Free MP3 CD Ripper 2.6, when converting a file, allows user-assisted remote attackers to execute arbitrary code
via a crafted .mp3 file.

CVE-2019-9706 Vixie Cron before the 3.0pl1-133 Debian package allows local users to cause a denial of service (use-after-free and daemon crash) because of a

force_rescan_user error.

CVE-2019-9489 A directory traversal vulnerability in Trend Micro Apex One, OfficeScan (versions XG and 11.0), and Worry-Free Business Security (versions 10.0,
9.5 and 9.0) could allow an attacker to modify arbitrary files on the affected product's management console.

CVE-2019-9458 In the Android kernel in the video driver there is a use after free due to a race condition. This could lead to local escalation of privilege with no
additional execution privileges needed. User interaction is not needed for exploitation.

CVE-2019-9447 In the Android kernel in the FingerTipS touchscreen driver there is a possible use-after-free due to improper locking. This could lead to a local
escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.

CVE-2019-9442 In the Android kernel in the mnh driver there is possible memory corruption due to a use after free. This could lead to local escalation of privilege
with System privileges required. User interaction is not needed for exploitation.

CVE-2019-9431 In Bluetooth, there is a possible out of bounds read due to a use after free. This could lead to remote information disclosure with heap information

written to the log with System execution privileges needed. User interaction is not needed for exploitation. Product: AndroidVersions: Android-
10Android ID: A-109755179

CVE-2019-9427 In Bluetooth, there is a possible information disclosure due to a use after free. This could lead to local information disclosure with no additional
execution privileges needed. User interaction is not needed for exploitation. Product: AndroidVersions: Android-10Android ID: A-110166350

CVE-2019-9381 In netd, there is a possible out of bounds read due to a use after free. This could lead to remote information disclosure with no additional
execution privileges needed. User interaction is not needed for exploitation. Product: AndroidVersions: Android-10Android ID: A-122677612

CVE-2019-9350 In Keymaster, there is a possible EoP due to a use after free. This could lead to local escalation of privilege with no additional execution privileges

needed. User interaction is not needed for exploitation. Product: AndroidVersions: Android-10Android ID: A-129562815

The ‘hot’ vulnerability nowadays, almost every
modern browser exploit leverages a UAF

Page = 20

Use After Free

» From the defensive perspective, trying to detect use after free
vulnerabilities in complex applications is very difficult, even
In industry

* \Why?

— UAF’s only exist in certain states of execution, so statically scanning
source for them won’t go far

— They’re usually only found through crashes, but symbolic execution
and constraint solvers are helping find these bugs faster

Page = 21

Double Free

= Double Free

— Freeing a resource more than once can lead to memory leaks.

— The allocator's data structures get corrupted and can be exploited by an
attacker.

Page = 22

Fast bin index 0 4

Chunksize(16 T 24

Main Arena

Chunks [j
[]

Page = 23

: Top chunk
n
, o TTTTTEEEEEEmm s mEmm \
I)
I |
Regular 1 2 3 64 65 126
bin index
2 Unsorted
Chunk size [bin I 16 24 = I 512 I 576 I >=262144*2]

Chunks

Game Consoles

* Evolving entertainment platforms

— Play games, stream media, browse the web

* 100% consistent machine for developers

— Don’t have to account for different specs (eg. PC’ s)

e Enforces DRM much better than PC’s can

— It’s a controlled platform that only runs code as blessed by Sony, Microsoft,

Nintendo

Page = 24

Xbox 360 — Nov. 2005

Page = 25

Xbox 360 — Nov. 2005

* Security Perspective

— Only runs signed code or executables

— Rigorous chain of trust, secure bootstrapping

— Encrypted runtime memory

— eFuses to enforce updates (these are awesome)
— NX/DEP

— No ASLR

Page = 26

KING KONG EXPLOIT

updates don’t always patch bugs, sometimes they introduce them

Page = 27

King Kong Exploit — Dec. 2006

* Integer based bug, resulting in code execution at
the Hypervisor context

— Complete system control

* The bug leveraged by the King Kong Exploit was
INTRODUCED in kernel version 4532, and
patched two updates later in v4552

— For reference, the Xbox 360 shipped on v1888

Page = 28

About the Xbox 360 & Games

» All executables (.XEX’s) are signed by
Microsoft which the system verifies to
prevent tampering with code

* Data assets such as textures, models,
shaders, and audio as used by games
are NOT signed!

— Find bugs in game asset parsers

Page = 29

Figure 1. The Cryptographic Anatomy of a XEX File

4-bytes: XEX2

RSA Signature

SHA Hash of Section 1

=)

SHA Hash of Section 2

=)

Section 1

Section 2

Stage One: King Kong’s Role

* A maliciously crafted unsigned shader file parsed by the signed King Kong
game XEX, can lead to unprivileged code execution on the system

* King Kong was one of many possible memory corruption vectors that could
have been used to get basic code exec

.J King Kong Shader Expliot for XELL
File Edit View Favorites Tools Help

QBack v ? Search Folders E]v

iress || E:\King Kong Shader Expliot for XELL
i] cygwinl.dll
File and Folder Tasks ¥ =) linux_patch.c
=) Readme.txt
g] shader.bin
[win_patch.exe

<«

Other Places

»

Details

King Kong Shader Expliot
for XELL -
File Folder C:\WINDOWS\system32\cmd.exe
Date Modified: 10. august 2007, E:\King Kong Shader Expliot for XELL>dir
22:15 Uolume in drive E is XBOX360

Uolume Serial Number is @BB2-5EF?

Directory of E:\King Kong Shader Expliot for XELL = UBISOFT

.2007 22:15 <DIR>
.2007 22:15 <DIR> -
.2007 13:33 1 873 811 cygwinl.dll
.28087 16:58 4 778 linux_patch.c
.2007 208:59 1 669 Readme.txt
.2807 16:53 3 896 shader.hin
.2007 18:38 15 344 win_patch.exe
5 File(s> 1 899 4908 hytes
2 Dird(s> 491 848 hytes free

E:\King Kong Shader Expliot for XELL>win_patch.exe “c:\king_kong.iso"_

Page = 30

About the Xbox 360 Hypervisor

e A small Hypervisor (Hv) sits next
to the kernel, near the top of
memory

* The Hv handles some crypto keys,
low level IO, memory
encryption/decryption operations
and more

* |If you can take over the Hv, you
have access to physmem and the
highest privilege of execution

Page = 31

Physical Memory

Kernel

Hypervisor

0Xx00000000

OXFFFFFFFF

 The PPCinstruction ‘sc’ is
used to make system calls
on the Xbox 360, the Hv
handles these calls as they
are made

* Unfortunately, along came
a bug in the syscall handler

):

Page = 32

2xt:826B9AF8
2xt:826B9AF8
2xt:826B9AF8
2xt:826B9AF8
2xt:826B9AF8
2xt:826B9AF8
2xt:826B9AF8
2xt:826B9AF8
2xt:826B9AF8
2xt :826B9AF8
2xt:826B9AFC
2xt:826B9B0OO
2xt:826B9B0Y4
2xt:826B9B08
2xt:826B9B6C
2xt:826B9B10
2xt:826B9B14
2xt:826B9B18
2xt:826B9B18
2xt:826B9B18
2xt:826B9B18
2xt:826B9B1C
2xt:826B9B20
2xt:826B9B24
2xt:826B9B28
2xt:826B9B28
2xt:826B9B28
2xt:826B9B2C
2xt:826B9B30
2xt:826B9B34
2xt:826B9B38
2xt:826B9B3C
2xt:826B9B40
2xt:826B9B44
2xt:826B9B44
2xt:826B9B44
2xt:826B9B48
2xt:826B9B48
2xt:826B9B48
2xt:826B9B4C
2xt:826B9B50
2xt:826B9B54
2xt:826B9B58
2xt:826B9B5C
2xt:826B9B6O
2xt:826B9B64
2xt:826B9B68

Cut -02%LZDNDLO

int _ cdecl SleepEx(int intervalls, int altertable)

SleepEx:

.set intervalNs, -0x38

nfspr
bl
stwu
nr
cmpwi
bne
1i

convert_ms_to_ns:

valid value:

loc_826B9B44:

delay_loop:

rrrrrrrr Ll =

rldicl
addi
mulli
std

nr
cmpluwi
bne
stuw
lis
addi
stuw

clrluwi

nr
nr

1i

bl
cmpluwi
beq
cmpwi
beq

CODE XREF: sub_826B2EA8+18Tp
sub_826B2ED8+4Tj

%r12, LR

__savegprlr_29

%sp, —0x88(%sp)

%¥29, %rh

cré, %r3, -1 # INFINITE

crb6, convert_ms_to_ns

%r11, 6 # -1 -> 0 for KeDelayExecutionT
valid _value

CODE XREF: SleepEx+14Tj
%r10, %r3, 0,32 # ms to units of 186ns
%r11, %sp, 0x80+intervalNs
%18, %10, -0x2710
%108, 0x808+intervalNs(%sp)

CODE XREF: SleepEx+1CTj
%r38, %r11
cr6, %r11, 0
cré, loc_826B9B44 # if intervalMs=8, skip
%r11, 0x80+intervalNs+4{%sp)
%r11, -0x8000 # set msb=1 for relative time
%38, %sp, 0x80+intervalNs
%r11, Bx80+intervalNs(%sp)

CODE XREF: SleepEx+38Tj
%r31, %r29, 24

#t CODE XREF: SleepEx+6C}j
interval

%rh4, %r29 # alertable

%r3, 1 # waitHMode
KeDelayExecutionThread

cré, %r31, 8

cr6, successful

cré, %r3, 0x161 # STATUS_ALERTED

cr6, delay loop

%r5, %r38

PONC _YDCC - ClaanCuask L‘

Pseudocode of the Hv Bug

int syscall handler(uint64 t syscall num,
{

if((uint32 t)syscall num > Ox61)
return 0;

syscall table[syscall num](...);

The Oops

* Only the lower 32 bits of

the syscall number are
sanity checked

Physical Memory 0x00000000

e The whole 64 bit number

is used in address
calculation

syscall table[syscall num](...);
Kernel
Arbitrary jump into userland

memory/code at the HV Context Hypervisor

OXFFFFFFFF

Page = 34

Game Over

WD-UXB1AA1IW1Z246
A 01.01A01
WDC WD1OJPUT-00A1YTO

" iressing mode: 2

« #cylinders: 16383

« gheads: 16

= gsectors: 1953525168

egistered new device: sda

= trying to make sense of sda, let’s assume it’s fat
= sata dud init
SATA device at €a001200
ATAPI inguiry model: PLDS DG-16D2S
registered new device: dud

= trying to make sense of dud, let’s assume it's 1509660
= CPU PUR: 00710800
= FUSES - write them down and keep them safe:
fuseset 00: cOffffffeLreeeee
fuseset 01: 0fOfOfOFOfOffOfO
fuseset 02: f000000000000000
fuseset 03: 2649359992639642
fuseset 04: 2649359992639642
fuseset 05: 151dfeaBdfS5cScc4
fuseset 06: 151dfeaBdfScScc4
fuseset 07: £O00000000000000
fuseset 08: 0000000000000000
fuseset 09:
fuseset 10:
fuseset 11:

= your cpu key: 26D9359992639642151DFEABDFSCSCC4
= your dud key: 30615DB9IB4C26B443CD1CBASFCOO5F60

= network config: 192.168.1.99 ~, 255.255.255.0
MAC: ?CEDBDABBE4E

* Looking for xewon.elf or unmlinux on USB/CD/DUD or user-defined file via TFTP...

Page = 35

XBOX 360 HARDWARE ATTACKS

Straying from binary exploitation, but still interesting

PPPPPPP

SMC / JTAG Hack —2007-2009

* Uses the SMC and JTAG to trigger a DMA overwrite
instantly at bootup rather than having to load a game
such a King Kong

* Cat and mouse for a few years, allowing hackers to boot
into downgraded, exploitable kernels (eg v4532)

* Eventually Patched by MS when they decided to rework
the boot process

Page = 37

SMC / JTAG Hack

TR
LRI HTRITYY

it
LU LT R RRT TFET Y

(it

CYG3e0v2

-~
VCC¥

Page = 38

Reset Glitch Hack (RGH) — Aug. 2011

* There’s some hash checks that expect a 0 to
be returned for a good hash, or 1 for a hash
mismatch (fail)

* Sending a specific reset signal down a pin on
the CPU clears the CPU registers

* Reset the registers as the hash check returns

Page = 39

itch Hack (RGH)

O
e
(b
7))
)
14
Q
(e
™
X
o
o]
>

o
<
n
]
(@]
©
o

Nintendo 3DS - Feb. 2011

NINTENDD3DS‘

Page = 41

Nintendo 3DS - Feb. 2011

* Security Perspective
— Very tightly sealed bootrom, hardware disabled
— Only runs signed code or executables
— Hardware based keyscrambler for crypto keys
— NX/DEP (Only used on the ARM11 Core)
— Runtime memory is not encrypted

— Has eFuses, not really used
— No ASLR

Page = 42

Nintendo 3DS Architecture

App Processor — ARM11 Security Processor — ARM9

Micro Kernel Micro Kernel

% - : Samisk /4
TOSHIBA

TC58NVGOS3AFT 1 6 (c]:]

1Gb NAND SLC

Page = 43

PWNING OVER THE PXI

Owning the SysCore through the PXI

Page = 44

VerifyRsaSha256() — Jun. 2013

 Straight stack smash bug, results in code
execution on the Security Processor (ARM9)
— Complete system control

* Present from firmware version 1.0.0—-4.5.0
* Bug discovered in 2012

Page = 45

Stage One: ARM11 Code Exec

e A stack smash exists in
the DS Profile fields in the
native settings applicatio Which setting do you want to change?
on all 3DS’s at the time.
No need for any games!

e This is a straight stack
smash that will get us
control, but there is DEP
on the ARM11 so you
must ROP

Page = 46

State of Control

App Processor —ARM11 Security Processor — ARM9

Micro Kernel Micro Kernel

We have at least basic code exec
through ROP on the ARM11

= 3 s SanDisk 24
TOSHIBA

TC58NVGOS3AFT 1 6 (c]:]

1Gb NAND SLC S0,

Page = 47

TAKING OVER THE ARM9

Page = 48

Malicious PXI Requests

App Processor —ARM11 Security Processor — ARM9

Micro Kernel Micro Kernel

We have at least basic code exec
through ROP on the ARM11

= 3 s SanDisk 24
TOSHIBA

TC58NVGOS3AFT 1 6 (c]:]

1Gb NAND SLC S0,

Page = 49

Malicious PXI Requests

App Processor —ARM11

Security Processor — ARM9

Micro Kernel

. ><
N

Micro Kernel

Exploit PXI handlers
on the ARM9 side!

We have at least basic code exec
through ROP on the ARM11

SanDisk 24

TOSHIBA
16

S

TC58NVGOS3AFT
1Gb NAND SLC

Page = 50

Pseudocode of the ARM9 Bug

int ps_VerifyRsaSha256(RSA SIG * sig)
{
RSA SIG localsig;
memset(localsig, 0, sizeof(RSA SIG));

memcpy(localsig.sigbuf, sig->sigbuf, sig->sigsize);

return result;

Pseudocode of the ARM9 Bug

int ps_VerifyRsaSha256(RSA SIG *
{

RSA SIG localsig;
memset(localsig, 0, sizeof(RSA SIG));

memcpy(localsig.sigbuf,

return result;

VerifyRsaSha256() — Jun. 2013

* Bug is basically a memcpy with user controlled
data, and a user specified size

* No DEP or ASLR on the ARMY9, simply overwrite
return address and jump onto your buffer! (:

* With control of the ARM9 you can do anything

— Load a custom firmware & soft reboot the system

Page = 53

Owning the 3DS

* Code exec on the ARM11 is easy

— Tons of crappy vulnerable games everywhere, less
exciting exploits exist to do this

* Owning the ARM9 is much harder

— Limited attack surface with little user input

Page = 55

PlayStation 3 — Nov. 2006

Page = 56

PlayStation 3 — Nov. 2006

* Security Perspective
— FreeBSD Based OS

— Only runs signed code or executables
— Rigorous chain of trust, secure

bootstrapping
— Cell Architecture
* |solates cores from each other, HV
* Dedicated System / Security Cell
— Encrypted runtime memory

— Encrypted HDD
— eFuses

— NX/DEP

— No ASLR

Page = 57

Cell Broadband Engine Processor

IS ES S S SR AL AR

Ram DuS;
v ‘Tﬁ”mm

.

. g‘

¥
=

- wr'

Page = 58 "'"@mb

AR vodiee sy omtu:»vhﬁ'

Chain of Trust 3
Name Pro[;zst:l / updateable revocable® usage
bootldr SPE boot Iv0
IvO PPE HV v boot Ivl
metldr SPE run *dr
lvlidr SPE v decrypt Ivl
v | PPE RV v hypervisor
isoldr SPE v decrypt modules
sC_iso SPE v v
lv2ldr | SPE v decrypt Iv2
| Iv2 _PPESV | v | ¥V | kemnel
} appldr \ SPE [v | v | decrypt games
‘some game PPE PS l v v %
*as perSonys cification:

GeoHot hacks PS3 Hv - Jan. 2010

e Through OtherOS (Linux
on PS3) and chip glitching,
GeoHot owns the PS3
Hypervisor

* Glitching ‘creates’ a use
after free (UAF) scenario
in the Hypervisor that is

then exploited to get
code exec

 Dumps of PS3 HV & kernel
make their way public

Page = 60]

Name

bootldr
IvO
metldr
Ivlidr
Ivl
isoldr

sC_iso

Iv2idr
Iv2

appldr

some game

Miowoch, 20 Dezembe 2010

Chain of Trust

Processor /

Mode
SPE

PPE HV
SPE
SPE

PPE HV
SPE
SPE

SPE

PPE SV
SPE

PPE PS

updateable revocable®

usage

boot Iv0

boot Ivl

run *ldr
decrypt Ivi
hypervisor

decrypt modules

decrypt Iv2

kernel

. decrypt games
P
*as per Sony's specification

Sony Disables OtherOS — Mar. 2010

Page = 62

PS3 Jailbreak — Aug. 2010

e With the PS3 Kernel (LV2) dumped, heap overflow found in USB handling

during startup while the system searches for a service jig

* The main bug is an overflow in long device descriptors that leads to
memory corruption on the heap

e Results in control of the LV2

Page = 63

PS3 Jailbreak — Aug. 2010

Page = 64

PS3 Jailbreak — Aug. 2010

* Heap overflow setup and triggered through a USB hub (oops) and six USB’s

e It’s a bit like musical chairs, plugging and unplugging a number of USB’s to
malloc/free stuff — everyone just emulates this process with a single USB

PSJailbreak

1

e

4 G PINAL

Page = 65

Chain of Trust

Processor /

Mode
bootldr SPE boot Iv0
IvO PPE HV boot Ivl
metldr SPE run *Idr
Ivlidr SPE decrypt Ivl
Iv | _ PPE HV _ | hypervisor
isoldr SPE decrypt modules
SC_iso SPE

Name updateable revocable® usage

Iv2idr SPE decrypt Iv2
PS3Jailbreak = N2 PPESV | kernel
. appldr | SPE | 7 . decrypt games
some game PPEPS | B)
*as per Sony's specification

Miowoch, 20 Dezembe 2010

PS3 ECDSA KEY EXTRACTION

Largest console break of this generation stems from crypto flaw

Page = 67

PS3 ECDSA Key Extraction — Jan. 2011

* Executables running on
the PS3 are modified ELF’
s known as SELF’s

e Signed by Sony’s ECDSA
Key, encrypted by the
associated Lv(0,1,2) keys

— Elliptic Curve Digital
Signature Algorithm

Page = 68

ELF

ehdr + phdr (again...
phdr #0 data
phdr #| data
phdr #N data

PS3 ECDSA Key Extraction — Jan. 2011

* With control of the LV2, you can make crypto requests

to the security SPE and use it as a black box

e A crypto implementation flaw is uncovered by
failOverflow regarding Sony’s ECDSA signatures

Page = 69

Sony’s ECDSA code

{in{ 9etR0mciomNumber()

return Y. // chosen by fair dice roll.
// Quaranteed to be random.
}

fanlQuertild’,

Elliptic Curve Cryptography

y =x-4x+0

1o O A N O N B O ®

F <N
N
o
N -
FaN
D

Page = 71

Const Instead of Nonce

For Alice to sign a message m, she follows these steps:

. Calculate e = HASH(m), where HASH is a cryptographic hash function, such as SHA-2.
. Let z be the L,, leftmost bits of e, where Ly, is the bit length of the group order n.

. Select a cryptographically secure random integer k from [1,n — 1].

. Calculate the curve point (z1,y1) =k X G.

. Calculate » = £; mod n. If » = 0, go back to step 3.

. Calculate s = k™! (z+rd4) mod n. If s = 0, go back to step 3.

. The signature is the pair (7, 8).

N o oA 0O =

When computing s, the string z resulting from HASH(m) shall be converted to an integer. Note that z can be greater than 1 but not longer.!]

As the standard notes, it is not only required for k to be secret, but it is also crucial to select different k for different signatures, otherwise the equation in step 6 can be
solved for d4, the private key: Given two signatures (7‘, s) and ('r, s'), employing the same unknown k for different known messages m and m/’, an attacker can

z—2
calculate z and 2/, and since 8 — 8’ = k! (z o z’) (all operations in this paragraph are done modulo 72) the attacker can find k = - Since s = k~* (z + 'rdA),
§—8

) sk —z
the attacker can now calculate the private key|d 4 =

. This implementation failure was used, for example, to extract the signing key used for the PlayStation 3

gaming-console.[?] Another way ECDSA signature may leak private keys is when k is generated by a faulty random number generator. Such a failure in random number

Page = 72

Effects of Missteps

* With only TWO signatures from the Crypto SPE,
you can compute Sony’s Private ECDSA Key

* With the ECDSA Key, the floodgates are
opened

— You can sign anything as Sony
— This key is embedded in hardware

Page = 73

[ﬁ[You have earned a trophy. E
s # FailOverflow

On-dee
Public-key crypto v v v v
Chan of wrust v v 4
Per-console keys v v v
Signed executables v v v
Security coprocessor v J
Full media encryption and signing v
Encrypted storage v "4
Self-signed storage v
Memory encryption/hashing v
Hypervisor v v
User/kerneimode v
Anti-downgrade eFUSEs v

Page = 74

metldr Owned

* Geohot releases metldr decryption keys

rvkldr

vk

ruklist /
rvkrw‘

Page = 75

|
suflsajrafw‘:\ule.self v2_kerwel.self]
/ 4L_ifo_;r>u_maAule.qelf whaelf / Fqﬁ_emu.;eli I sele
/ mc;sa;sfmgmaéule.self / rsﬁ;qmm.self
/ me_i';a_sf:u_ma&ulaﬁdf / Fsz_saﬂremaself

Name

bootldr
IvO
GeoHot metldr
Ivlidr
Ivl
isoldr

sC_iso

Iv2idr
Iv2

appldr

some game

Miowoch, 20 Dezembe 2010

Chain of Trust

Processor /

Mode
SPE

PPE HV
SPE
SPE

PPE HV
SPE
SPE

SPE

PPE SV
SPE

PPE PS

updateable revocable®

usage

boot Iv0

boot Ivl

run *ldr
decrypt Ivi
hypervisor

decrypt modules

decrypt Iv2

kernel

. decrypt games
P
*as per Sony's specification

Sony Nukes metldr

Ivildy

sv_iso_for Fsaema.self app
/ me_i-:o_for_'aﬂemu.éelf V2 kevwel.self

/ Gv_iéo_ifw_mo.:\ult.thf / ps2_emaself
; wh.self
/ t.L_.sa_sFa_nw&..le.self / I?GZ__‘Ttema.‘;elf
/ mc_isv_sru_maduleself / rsz_soﬂ'emu.self
/ me_iso_sru_anale.self J
Page = 77

Sony Sues Geohot — Jan. 2011

Se

RERERALTY
Netnt 00 '

L L S L |)
PRI
. i»

. 4 1L IS

b
" i8}i) GEORGEHO
. N eq

Y ELECTRONICS HACKER

Page = 78

Name

bootldr
IvO
metldr
Ivlidr
Ivl
isoldr

sC_iso

Iv2idr
Iv2

appldr

some game

Miowoch, 20 Dezembe 2010

Chain of Trust

Processor /

Mode
SPE

PPE HV
SPE
SPE

PPE HV
SPE
SPE

SPE

PPE SV
SPE

PPE PS

updateable revocable®

usage

boot Iv0

boot Ivl

run *ldr
decrypt Ivi
hypervisor

decrypt modules

decrypt Iv2

kernel

. decrypt games
P
*as per Sony's specification

Owning the Iv0

* metldris gone, so you need to own the IvO

* |vO blobs can be signed, but they’re encrypted
and we don’t have the keys to decrypt them

Page = 80

Owning the Iv0

* metldr is gone, so you need to own the IvO

* [vO blobs can be signed, but they’re encrypted and we
don’t have the keys to decrypt them

— Sign random data blobs, and hope the instruction at the entry
point ‘decrypt’ to a jmp/call to code that you control

Page = 81

IvO Owned - Oct. 2012

* Trying randomly signed blobs eventually
works and execution is achieved at level of IvO

Page = 82

Name

bootldr
You are Here IvO

metldr

Ivlidr
Iv |

isoldr

sC_iso

Iv2idr
Iv2

appldr

some game

Miowoch, 20 Dezembe 2010

Chain of Trust

Processor /
updateable revocable™
Mode P

SPE
PPE HV
SPE
SPE
PPE HV
SPE
SPE

SPE

PPE SV
SPE

PPE PS

usage

boot Iv0

boot Ivl

run *ldr
decrypt Ivi
hypervisor

decrypt modules

decrypt Iv2

kernel

. decrypt games
P
*as per Sony's specification

Ilv0 Owned — Oct. 2012

* Decryption keys are retrieved as lv0. Now you
can create meaningful IvO blobs, encrypt
them, and sigh them

* bootldr also exploited and dumped for fun

— Not updateable anyway, so it doesn’t matter
much

Page = 84

Po, P

GAME OVER

INZERT COIN

PS3 Aftermath

* Sony drops lawsuit against Geohot

— Must never hack Sony products again

* No more updateable seeds of trust exist on
the PS3 that Sony can utilize

— PS3 totally broken

Page = 86

Introduction

So far, we have been exploiting binaries running in
userspace.

Userspace is an abstraction that runs “on top” of the kernel.

Filesystem I/O

Privilege Levels (Per User/Per Group)
Syscalls

Processes

And so much more

A N

Introduction

So far, we have been exploiting binaries running in
userspace.

Userspace is an abstraction that runs “on top” of the kernel.

1. Filesystem |/O

2. Privilege Levels (Per User/Per Group)
3. Syscalls

4. Processes

5.

And so much more

These are all “services” provided by the Kernel

Introduction

What’s a Kernel?

Low Level code with two major responsibilities

1. Interact with and control hardware components
2. Provide an Environment in which Applications can run

The Kernel is the core of the operating system

Introduction

The kernel is also a program that:

Applications « Manages the data I/O requirements
) N issued by the software
Kernel « Escaping these requirements into

instructions
« Handing them over to the CPU

CPU Memory Devices

Page = 91

Ring Model

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Ring Model

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Ring 1 and Ring 2 are not utilized by
most popular/modern Operating
Systems (Linux / Windows / OSX)

Ring Model

We’ve Been Here \

Ring Model

We’ve Been Here \

We’'re Going Here

“Matrix”

“The Matrix is the world that has
been pulled over your eyes to blind
you from the truth.” - Morpheus |

.
\

4

The kernel provides the “matrix’
your programs run in

Break out of the Matrix, and you
pwn the entire system

Kernel Pwning

“Jailbreaking” or “rooting” devices
often depends on finding and
leveraging Kernel bugs

Remember JailbreakMe?

It used a remote code execution
primitive inside Safari to trigger a
kernel-level exploit to bypass
Apple’s code-signing protection

Jailbreak Game Console

Page = 98

Kernel Basics

: Unable to mount rout fs on unknown-block(0,0)
mm 6 4.13 . 11-gnu-1 #1
?470UBT/?7470VBT, BIOS mmee 3774c98 09/07/2016

Your Kernel is:

Managing your Processes
Managing your Memory
Coordinating your Hardware

A crash oftentimes means a reboot!

In general, we want to spend as little time there as possible.

Kernel Basics

The Kernel is typically the most powerful place we
can find bugs

But, how do we go from “vulnerability” to “privileged
execution” without bringing down the rest of the
system?

Kernel Exploitation Strategy

Al o

Find vulnerability in kernel code
Manipulate it to gain code execution
Elevate our process’s privilege level
Survive the “trip” back to userland
Enjoy our root privileges

Kernel Exploitation Strategy

You already know how to find these!

are almost exactly the same as
userland vulnerabilities.

1. Stack Overflows
2. Heap Overflows

By now, finding these should be a familiar process

Kernel Exploitation Strategy

= Monolithic Kernel

— Monolithic kernel is a single large processes running entirely in a single address
space. It is a single static binary file. All kernel services exist and execute in
kernel address space. The kernel can invoke functions directly.

Monolithic kernel vs Microkernel

Monolithic OS kernel

_ .System call

Application - What was the main idea?

user _ What were the problems?

mode
VES

Microkernel
IPC, file system

Application Device
IPC driver
Scheduler, virtual memory
Kernel
mode
LKMS Device drivers, dispatcher ...
Hardware Hardware
Page = 103

IPC, virtual memory

Kernel Exploitation Strategy

The most common place to find vulnerabilities is inside of
(LKMs).

are like that run in Kernel Space.
A few common uses are listed below:

> Device Drivers

> Filesystem Drivers

> Networking Drivers

> Executable Interpreters
> Kernel Extensions

> (rootkits :P)

Kernel Exploitation Strategy

LKMs are just binary blobs like your familiar ELF's, EXE's
and MACH-O’s. (On Linux, they even use the ELF format)

You can drop them into GDB and reverse-engineer them
like you're used to already.

Kernel Exploitation Strategy

There’s a few useful commands that deal with LKMs on
Linux.

Insmod ---> Insert a module into the running kernel
rmmod ---> Remove a module from the running kernel
Ismod ---> List currently loaded modules

A general familiarity with these is helpful

Kernel Exploitation Strategy

The same basic exploitation techniques apply to Kernelspace
(After all, it’s just x86 codel!)

Shellcoding, ROP, Pointer Overwrites,
, etc can all be used to execute code in Kernel Land.

Kernel Functions

Common Library calls are sometimes different, so there is
a slight learning curve involved.

printf() —> printk()

memcpy() -—-> copy_from_user()/copy _to user()
malloc() -—-> kmalloc() (slab/slub allocator)
HEEN --=> kfree()

Typically, whatever you want to know is a quick google-search or
man page away.

Kernel Debugging

Debugging kernel code can be difficult
We can’t just run the kernel in

You will often have to rely on stack dumps, error messages, and
other “black box” techniques to infer what’s going on inside the

kernel.

Kernel Debugging

This is an example of what you
might see if you get a crash in
the kernel. setiab

01982ebcal EFFE00147dc4000 1111 |wrn*w 0L00 £EFLFLLEBLedZ

:\H 8001° ‘;\ ebeh8 LELLPLFFB1V2a7cY £ELFBOO147dc4000 £ffEBO19

OO01 £ FHE

I %“91‘ .nitvt‘n;l Call Trace: ,‘
[4265.8536731 [<KEPEEFFFF817318ed>] __ nf_ct_ext_destroy+0x3d/0x60
[KEFPEFFFF8172a7c9>1 nf _comntrack_free+0x29-,0x60

[4265.8537081
[4265.853741]1 [KEFFEFFFF8172b7ae>] destroy_commtrack+0x9e/0xd0
St k D [4265.8537741 [KEfFFFFFf8172eb?0>1 T nf_conntrack_helper_fini+0x30-,0x30
a C u m p [4265.853812]1 [KIfffffrff817271a2>1 nf_comtrack_destroy+0x12,0x20
[4265.853846]1 [KEFffffff8172b64b>]1 nf_ct_iterate_cleanup+0xch,/0x160
[KFEFFFFFFB172£0d43>1 nf_ct_13proto_pernet_unregister+0x33,0x70

[4265.8538811
[KEFFEFFFFB1791F88>]1 ipud_net_exit+0x18,0x50

Ca” Trace [4265.8539211
[4265.8539541 [KEfffffff816£3219>] ops_exit_list.isra.1+0x39/0x60
[4265.8539891 [KFfffffff816£f3b60>1 cleanup_net+0x100,0x1cO

Register Dum -
g p [4265.8540221 [<KEfffffff8105f6ff>]1 process_one_uork+0x17f/0x420
[4265.8540561 [<KFfffffff8105fde9>] worker_thread+0x119-,0x370
[KEFFFfFff8105fcd0>] 7 rescuer_thread+0x2f0,0x2f0

[4265.8540891
[4265.8541241 [<Ffffffff810668ab>] kthread+Oxbb/0xcO
[<KEFEFEFFFB10667f0>1 7 kthread_create_on_node+0x120,0x120

[4265.8541531
4265.8541921 [<Efffffff818f6cfc>] ret_from_fork+0x?c/0xbO

[4265.8542241 [<ffffffffB10667f0>]1 7 kthread_create_on_node+0x120,0x120

[4265.8542601 Code: 83 ec 68 Of b6 58 11 84 db 74 43 48 01 c3 48 83 7b 10 00 74 39 48 c? c

90 ad de 48 c?7
[4265.8544831 RIP [<ffffffffa00806cd>] nf_nat_cleanup_commtrack+0x3d/0x?0 [nf_natl

- 4265.854528]1 RSP <ffffB86801982ebcS8>

| 4265, 8545481 CRZ: ffffc90019536d20
4265.864159] Kernel panic - not syncing: Fatal exception in interrupt
4265.8642001 drm_kms_helper: panic occurred, switching back to text comsole

Kernel Debugging

This is an example of what you
might see if you get a crash in

f ri‘ £f8801982ebch8 fIIIIIffB172a7c9 fBB0147dc4000 ffffBBO19a12010

¢ 6071
t h e k e r n e I ‘ 4265 .8536541 Call Trace:
[4265.8536731 [<EEFFFFFf817318ed>] _ nf_ct_ext_destroy+0x3d/0x60
[4265.8537081 [<FEEFFFFFB8172a7c9>] nf_conntrack_free+0x29,/0x60
[4265.8537411 [KEFfFffff8172b7ae>]1 destroy_conntrack+0x9e/0xd0
[4265.8537741 [KEFFFFFFF8172eb?0>]1 7 nf_conntrack_helper_fini+0x30,/0x30
[4265.8538121 [KEPFffffFf817271a2>1 nf_conntrack_destroy+0x12/0x20
[KEFFFFFFFB172b64b>]1 nf_ct_iterate_cleanup+Oxcbh/0x160

[4265.853846]
[<KFFFFFFFFB172£0d3>]1 wf_ct_l13proto_pernet_unregister+0x33/0x?70

[4265.8538811
[4265.8539211 [KFFFFFFFFB1791£88>]1 ipud_net_exit+0x18,0x50

[4265.853954]1 [<KFfffffffB16£3219>] ops_exit_list.isra.1+0x39/0x60
[4265.853989]1 [<KFfffffff816£f3b60>]1 cleanup_net+0x100/0x1cO

[4265.8540221 [<FfffFFFFB105f6ff>]1 process_one_work+0x17f/0x420
[<EEFFFFFFB105fde9>] worker_thread+06x119/0x370

Stack Dump o
[4265.854089]1 [<EEELLFFBIO5Fcd0>] 7 rescuer_thread+Ox2f0,0x2f0
[4265.854124]1 [<EEELPFIB10668ab>] kthread+0xbb/OxcO
[4265.854153]1 [<EEFEEFFB1066790>] 7 kthread_create_on_node+0x120,0x120
C a | I T race [4265.854192] [<EFELEELPBIBI6CEC>] ret_from_forksOx7c/Oxbo
[4265.8542241 [<EREEPEE1B1066700>] 7 kthread_create_on_node+@x120,0x120
[4265.854260] Code: B3 ec 08 Of b6 58 11 B4 db 74 43 48 01 c3 48 B3 7b 10 00 74 39 48 c7 ¢

%0 ad de 48 c?
[4265.854483]1 RIP [<ffffffffa00B06cd>] nf_nat_cleanup_conntrack+0x3d/0x?0 [nf_natl

RegiSter Dump | 4265.8545281 RSP <ffff8801982ebc58>

. 4265.8545481 CR2: f£fffc90019536d20
4265.8641591 Kernel panic - not syncing: Fatal exception in interrupt
4265.8642001 drm_kms_helper: panic occurred, switching back to text console

You might be able to see this
with dmesg if the crash is not

fatal.

Traditional UNIX credentials.

-» give_to_player ls -1
‘Real User ID w196

rwxrwxr-x 1 schen schen 202 May 9 2019 boot.sh
-rw-rw-r-- 1 schen schen 4127776 May 9 2019 bzImage
.Real Group ID -rwxrwxr-x 1 schen schen 898440 Nov 18 01:43 exp
-rwxrwxr-x 1 schen schen 897912 Nov 18 01:33 exp0
-rw-rw-r-- 1 schen schen 722 Nov 18 01:33 exp0.c
-rw-rw-r-- 1 schen schen 1979 Nov 18 01:27 expl.c
-rwxrwxr-x 1 schen schen 902704 Nov 18 01:28 exp2
-rw-rw-r-- 1 schen schen 2061 Nov 18 01:28 exp2.c
-rwxrwxr-x 1 schen schen 898584 Nov 18 01:29 exp3
-rw-rw-r-- 1 schen schen 1072 Nov 18 01:29 exp3.c

drwxrwxr-x 12 schen schen 4096 Nov 18 01:35 fs

-rw-rw-r-- 1 schen schen 11913216 Nov 18 01:43 initramfs.img

- give_to_player id

uid=1000(schen) gid=1000(schen) groups=1000(schen),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lpadmin),b126(sambashare),450(hmacc
)

USER I VIRT RES S CPU% MEM% Command

schen 0 26568 4872 R 0.7 0.0 htop
458 root 20 0 38232 3148 2752 S 0.7 0.0 3h56:48 @sbin/plymouthd --mode=boot --pid-file=/run/plymouth/pid --attach-to-ses
1186 gdm 20 O 665M 37460 18068 S 0.7 0.2 3h38:32 /usr/lib/gnome-settings-daemon/gsd-color

1 root 200 O 220M 9780 6884 S 0.0 0.1 38:28.36 /lib/systemd/systemd --system --deserialize 28

379 root 20 0 29856 1228 1080 S 0.0 0.0 0:00.00 /sbin/ureadahead -q
801 root 20 0 424M 9304 7884 S 0.0 0.1 0:00.00 /usr/sbin/ModemManager --filter-policy=strict
804 root 20 0 424M 9304 7884 S 0.0 0.1 0:01.04 /usr/sbin/ModemManager --filter-policy=strict
791 root 20 0 424M 9304 7884 S 0.0 0.1 0:01.37 /usr/sbin/ModemManager --filter-policy=strict
796 messagebu 20 0 143M 11200 8240 S 0.0 0.1 0:36.43 /usr/bin/dbus-daemon --system --address=systemd: --nofork --nopidfile --
941 root 20 0 165M 16960 9092 S 0.0 0.1 0:00.00 /usr/bin/python3 /usr/bin/networkd-dispatcher --run-startup-triggers
805 root 20 0 165M 16960 9092 S 0.0 0.1 0:00.04 /usr/bin/python3 /usr/bin/networkd-dispatcher --run-startup-triggers
814 root 20 0 107M 3516 3180 S 0.0 0.0 0:00.00 /usr/sbhin/irgbalance --foreground
806 root 200 0 107M 3516 3180 S 0.0 0.0 8:53.03 /usr/sbin/irgbalance --foreground
824 root 200 0 497M 12432 10104 S 0.0 0.1 0:00.00 /usr/lib/udisks2/udisksd
828 root 20 0 497M 12432 10104 S 0.0 0.1 0:00.78 /usr/lib/udisks2/udisksd
899 root 20 0 497M 12432 10104 S 0.0 0.1 0:00.00 /usr/lib/udisks2/udisksd
909 root 200 0 497M 12432 10104 S 0.0 0.1 0:00.00 /usr/lib/udisks2/udisksd
807 root 20 0 497M 12432 10104 S 0.0 0.1 0:05.08 /usr/lib/udisks2/udisksd
1106 syslog 20 0 347M 9980 7716 S 0.0 0.1 4:17.49 /usr/sbin/rsyslogd -n
1107 syslog 20 0 347M 9980 7716 S 0.0 0.1 0:00.01 /usr/sbin/rsyslogd -n
1108 syslog 20 0 347M 9980 7716 S 0.0 0.1 3:59.20 /usr/sbin/rsyslogd -n
808 syslog 20 O 347M 9980 7716 S 0.0 0.1 8:17.01 /usr/sbin/rsyslogd -n
809 root 20 0 62804 6304 5120 S 0.0 0.0 0:14.41 /lib/systemd/systemd-logind
O1LE wormd 0N n DOTM 12074 11E0Q00 C A A) n 1 T2 A2 DO /Jiievrr/7l s h/Zarrmiintecearvvitean/Asrrmniindte Aasaman

Elevate Privileges

Remember: The Kernel manages running processes

Therefore: The Kernel keeps track of permissions

1 | struct cred {
72 atomic_t usage;
3 | #ifdef CONFIG_DEBUG_CREDENTIALS
4 atomic_t subscribers; /* number of processes subscribed */
5 void *put_addr;
6 unsigned magic;
7 | #define CRED_MAGIC 0x43736564
8 | #define CRED_MAGIC_DEAD @x44656144
9 | #endif
10 kuid_t uid; /* real UID of the task */
11 kgid_t gid; /* real GID of the task */
12 kuid_t suid; /* saved UID of the task */
kgid_t sgid; /* saved GID of the task */
14 kuid_t euid; /* effective UID of the task */
15 kgid_t egid; /* effective GID of the task */
16 kuid_t fsuid; /* UID for VFS ops */
17 kgid_t fsgid; /* GID for VFS ops */
18 unsigned securebits; /* SUID-less security management */
19 kernel_cap_t cap_inheritable; /* caps our children can inherit */
20 kernel_cap_t cap_permitted; /* caps we're permitted */
21 kernel_cap_t cap_effective; /* caps we can actually use */
22 kernel_cap_t cap_bset; /* capability bounding set */
23 kernel_cap_t cap_ambient; /* Ambient capability set */
24 | #ifdef CONFIG_KEYS
25 unsigned char jit_keyring; /* default keyring to attach requested
26 * keys to */
27 struct key __rcu *session_keyring; /* keyring inherited over fork */
28 struct key *process_keyring; /* keyring private to this process */
29 struct key *thread_keyring; /* keyring private to this thread */
30 struct key *request_key_auth; /* assumed request_key authority */
31 | #endif
32 | #ifdef CONFIG_SECURITY
33 void *security; /* subjective LSM security */
34 | #endif
35 struct user_struct *user; /* real user ID subscription */
36 struct user_namespace *user_ns; /* user_ns the caps and keyrings are relative to. */ —
87 struct group_info *group_info; /* supplementary groups for euid/fsgid */ West
38 struct rcu_head rcu; /* RCU deletion hook */ tgl“’x"’m
39 | } __randomize_layout; \

https://code.woboq.org/linux/linux/include/linux/cred.h.html

Elevate Privileges

Conveniently, the Linux Kernel has two wrapper functions
for updating process credentials and generating process
credentials!

commit_creds(struct cred *new) {

struct cred *prepare_kernel cred(struct task_struct *daemon) {

Elevate Privileges

Now we can map out what we need to do

commit _creds(prepare_kernel cred(9));

We can find their addresses in /proc/kallsyms

/ $ cat /proc/kallsyms | grep commit creds
ffffffff810al420 T commit creds

frffffff81d88f60 R ksymtab commit creds
ffffffff81da84d0 r kcrctab commit creds
ffff;fffSldb948c r kstrtab commit creds

/ $ cat /proc/kallsyms | grep prepare kernel cred
ffffffff810al810 T prepare kernel cred
fFFFffff81d91890 R _ ksymtab_prepare kernel cred
ffffffff81ldac968 r _ kcrctab_prepare_kernel cred
ffffffff81db9450 r _ kstrtab_prepare_kernel cred

Returning to UserSpace

Why bother returning to ?

Most useful things we want to do are much easier from
userland.

In KernelSpace, there’s no easy way to:

> Modify the filesystem
> Create a new process
> Create network connections

Returning to UserSpace

How does the kernel do it?

push SSS_USER_VALUE

push SUSERLAND_STACK

push SUSERLAND_EFLAGS

push SCS_USER_VALUE

push SUSERLAND_FUNCTION_ADDRESS
swapgs

iretq

This will usually get you out of “Kernel Mode” safely.

Returning to UserSpace

For exploitation, the easiest strategy is
execution, and letting the kernel return by itself.

> Function Pointer Overwrites
> Syscall Table Highjacking
> Use-After-Free

You need to be very careful about destroying Kernel state.

A probably means a !

Example: Babydriver

-» babydriver 1s -1
total 13228

-rwxrwxr-x 1 schen schen

216 Jul 4 2017 boot.sh
-rw-rw-r-- 1 schen schen 7009392 Jun 16 2017 bzImage

-rw-rw-r-- 1 schen schen 6528512 Nov 18 01:09 rootfs.cpio

https://github.com/ctf-wiki/ctf-challenges/tree/master/pwn/kernel

Page = 119

https://github.com/ctf-wiki/ctf-challenges/tree/master/pwn/kernel

Page = 120

Kernel Space Protections

By now, you're familiar with the alphabet soup of exploit
mitigations

DEP Green: Present in Kernel Space
ASLR Yellow: Present, with caveats
Canaries

etc...

There's a whole new alphabet soup for Kernel Mitigations!

Kernel Space Protections

Some new words in our SOUP (There’s plenty more...)

MMAP_MIN_ADDR
KALLSYMS
RANDSTACK
STACKLEAK
SMEP / SMAP

Most of these will be off for the labs!

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Malicious
Program

OxfFFFfffff

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Program does mmap(0,....)

Malicious

Program

OxfFFfFfff

MMAP_MIN_ADDR

0x000000

Low
Memory

Malicious
Program

OxFFFFfff

NULL pointer dereferences

* Program does mmap(0,....)

Program writes malicious Code

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

0x000000 Program does mmap(0,....)

Kernel _ .
Memory Program writes malicious Code

Program triggers Kernel Bug

Malicious
Program
@

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

OXOOOOOO Program does mmap(O,)

Kernel . -
Memory Program writes malicious Code

Program triggers Kernel Bug

Malicious Kernel starts executing malicious
Program Code
@

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

0x000000 mmap min_addr disallows

Kernel programs from allocating low
memory.

Makes it much more difficult to

exploit a simple NULL pointer
Malicious dereference in the kernel.
Program
o

KALLSYMS

gives the address of all symbols in the
kernel.

We need this information to write reliable exploits without an

ksymtab

kcrctab
kstrtab
softsecf@softsec-VirtualBox:~$§

| it
TT

KALLSYMS

kallsyms used to be world-readable.

Now, it returns O’s for unprivileged users

softsec@softsec-VirtualBox:~$ cat /proc/kallsyms | grep commit_creds
00000000 T commit_creds

00000000 r _ _ksymtab_commit _creds

00000000 r _ kcrctab_commit_creds

00000000 r __ kstrtab_commit_creds

Can still be a useful source of information on older systems

SMEP / SMAP

SMEP: Supervisor Mode Execution Protection

Introduced in Intel IvyBridge

SMAP: Supervisor Mode Access Protection

Introduced in Intel Haswell

SMEP / SMAP

Common Exploitation Technique: Supply your own “get

root” code.

void get_r00t() {
commit_creds(prepare_kernel _cred(0));

}
int main(int argc, char * argv) {
trigger_fp_overwrite(&get_r0O0t);

/ltrigger fp use
trigger_vuln_fp();

I/l Kernel Executes get rO0t
/l Now we have root
system(“/bin/sh”);

0x000000

Kernel
Memory

Malicious
Program

OxFFFfFfff

SMEP / SMAP

SMEP prevents this type of attack by triggering a
if the processor tries to execute memory that has the “user”
bit set while in “ring 0”.

SMAP works similarly, but for data access in general

This doesn’t prevent vulnerabilities, but it adds considerable
work to developing a working exploit

We need to use , or somehow get executable code into
kernel memory.

Conclusion

Kernel Exploitation is weird, but extremely powerful

As userland exploit-dev becomes more challenging and more
expensive, kernelspace is becoming a more attractive target.

A single bug can be used to bypass sandboxes, and gain root
privileges, which may otherwise be impossible

A Guipe 10
¥ KERNEL EXPLOITATIONv

® e

G &A

Page = 135

