
CSC 472 Software Security
Heap Exploitation (3): House of Force

Dr. Si Chen (schen@wcupa.edu)

Class21

Page § 2

Pseudo Memory Map

0x00000000 – Start of memory

0x08048000 – Start of .text Segment

Runtime Memory

Libraries (libc)

ELF Executable

.text segment

.data segment

Heap

Stack

0x00000000 – Start of memory

0x08048000 – Start of .text Segment

Runtime Memory

Libraries (libc)

ELF Executable

.text segment

.data segment

Heap

Stack

0xb7ff0000 – Top of heap

0xbfff0000 – Top of stack

 0xFFFFFFFF – End of memory

MBE -
04/07/201
5

Heap Exploitation 2

Page § 3

Heap in Linux (GNU C Library – glibc)

ptmalloc2

brk() mmap()System call:

Page § 4

The Heap

Page § 5

Design your own Heap management system

§ Linked List
Free(3)

Free(2)

Free(1)

next
prev

Used

Used

next
prev

next
prev

NULL

NULL

Page § 6

Design your own Heap management system

§ bitmap

FBF F HH BB

FFFFFFBH

H: header --> 11
B: Body --> 10
F: Free à 00

Bitmap representation:
(HIGH) 11 00 00 10 10 10 11 00 00 00 00 00 00 00 10 11 (LOW)

128 byte per chunk
1MB / 128 = 8k

Page § 7

glibc source code https://code.woboq.org/userspace/glibc/malloc/malloc.c.html

Page § 8

Arena

§ Arena: the top level memory management entity.
§ There are two types of arenas.

– Main arena covers the traditional heap area: the space between start_brk and
brk for a process from kernel point of view, only one main arena exists for a
process.

– Non-main arena manages the memory fetched from kernel via mmap() system
call, there could be 0 to 2*(number of cpu cores) such arenas based on
process threads usage.

Page § 9

Arena

Page § 10

Arena

Page § 11

glibc source code https://code.woboq.org/userspace/glibc/malloc/malloc.c.html

Page § 12

Bins and Chunks

§ Internally, the heap manager needs to keep track of freed chunks so that
malloc can reuse them during allocation requests. In a naive
implementation, the heap manager could do this by simply storing all
freed chunks together on some enormous linked list. This would work, but
it would make malloc slow.

§ Since malloc is a high-utilization component of most programs, this
slowness would have a huge impact on the overall performance of
programs running on the system.

§ To improve performance, the heap manager instead maintains a series
of lists called “bins”, which are designed to maximize speed of
allocations and frees.

https://linux.die.net/man/3/malloc

Page § 13

Bins and Chunks

§ A bin is a list (doubly or singly linked list) of free (non-allocated) chunks.
Bins are differentiated based on the size of chunks they contain:
– Fast bin (16 ~ 80 bytes)
– Unsorted bin

– Small bin (< 512 bytes)
– Large bin (> 512 bytes)

Page § 14

Mechanism of glibc malloc

§ Allocated chunk
§ Free chunk
§ Top chunk

Page § 15

Top Chunk

§ Top Chunk: Chunk which is at the top border of an arena is called top
chunk. It doesn't belong to any bin. Top chunk is used to service user
request when there is NO free blocks, in any of the bins. If top chunk size
is greater than user requested size top chunk is split into two:
– User chunk (of user requested size)
– Remainder chunk (of remaining size)

§ The remainder chunk becomes the new top. If top chunk size is lesser
than user requested size, top chunk is extended using sbrk (main arena)
or mmap (thread arena) syscall.

https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c
https://github.com/sploitfun/lsploits/blob/master/glibc/malloc/malloc.c

Page § 16

The Malloc Maleficarum (2004)

§ The Malloc Maleficarum
– In late 2001, "Vudo Malloc Tricks" and "Once Upon A free()" defined the

exploitation of overflowed dynamic memory chunks on Linux.
– In late 2004, a series of patches to GNU libc malloc implemented over a dozen

mandatory integrity assertions, effectively rendering the existing techniques
obsolete.

– It is for this reason, a small suggestion of impossibility, that they present the
Malloc Maleficarum:
• The House of Prime
• The House of Mind

• The House of Force
• The House of Lore
• The House of Spirit
• The House of Chaos

Page § 17

House of Force
§ House of Force: In this technique, attacker abuses top chunk size and

tricks ‘glibc malloc’ to service a very large memory request (greater than
heap system memory size) using top chunk. Now when a new malloc
request is made, GOT entry of free would be overwritten with shellcode
address. Hence from now on whenever free is called, shellcode gets
executed!!

Page § 18

The Malloc Maleficarum (2004)

§ The Malloc Maleficarum
– In late 2001, "Vudo Malloc Tricks" and "Once Upon A free()" defined the

exploitation of overflowed dynamic memory chunks on Linux.
– In late 2004, a series of patches to GNU libc malloc implemented over a dozen

mandatory integrity assertions, effectively rendering the existing techniques
obsolete.

– It is for this reason, a small suggestion of impossibility, that they present the
Malloc Maleficarum:
• The House of Prime
• The House of Mind

• The House of Force
• The House of Lore
• The House of Spirit
• The House of Chaos

https://dl.packetstormsecurity.net/p
apers/attack/MallocMaleficarum.txt

https://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt
https://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt

Page § 19

House of Force

Unallocated
space

Top Chunk

Size = 0xxxxx

Unallocated
space

Top Chunk

Size = 0xxxxx

P0

Size = 0xxxxx

Unallocated
space

Top Chunk

Size =
0xFFFFFFFFFFFFFFFF

P0

Size = 0xxxxx

malloc p0

Overflow
and change

top chunk size

Page § 20

House of Force

Unallocated
space

Top Chunk

Size = 0xxxxx

Unallocated
space

Top Chunk

Size = 0xxxxx

P0

Size = 0xxxxx

Unallocated
space

Top Chunk

Size =
0xFFFFFFFFFFFFFFFF

P0

Size = 0xxxxx

malloc p0

Overflow
and change

top chunk size

• This attack assumes an overflow into the top chunk's header.
The size is modified to a very large value (-1 in this example).

• This ensures that all initial requests will be services using the
top chunk, instead of relying on mmap.

• On a 64 bit system, -1 evaluates to 0xFFFFFFFFFFFFFFFF.
• A chunk with this size can cover the entire memory space of the

program.

Page § 21

House of Force

Let us assume that the attacker
wishes 'malloc' to return address P.
Now, any malloc call with the size
of: &top_chunk - P will be serviced
using the top chunk. Note that P can
be after or before the top_chunk.

Page § 22

House of Force

E.g. top_chunk=0x601200

malloc(0xffe00030)

0xffe00030 < top_chunk_size

0xffe00030+0x601200=0x100401230

top_chunk=0x401230

Page § 23

House of Force

§ Prerequisites: Three malloc calls are required to successfully apply house
of force as listed below:
– Malloc 1: Attacker should be able to control the size of top chunk. Hence heap

overflow should be possible on this allocated chunk which is physically located
previous to top chunk.

– Malloc 2: Attacker should be able to control the size of this malloc request.
– Malloc 3: User input should be copied to this allocated chunk.

Page § 24

House of Force - example

Page § 25

Exercise: BambooBox

§ https://github.com/ctf-wiki/ctf-challenges/blob/master/pwn/heap/house-of-
force/hitcontraning_lab11/bamboobox.c

https://github.com/ctf-wiki/ctf-challenges/blob/master/pwn/heap/house-
of-force/hitcontraning_lab11/exp.py

Solution:

Source Code:

Page § 26

