
CSC 472 Software Security
ROP (3) & Dynamic Linking

& Return-to-libc Attack & ASLR
Dr. Si Chen (schen@wcupa.edu)

Class11



Page § 2

Review



Page § 3

Return-oriented programming 
(ROP)



Page § 4



Page § 5

ROP: The Main Idea



Page § 6

x

à add_bin()
à magic ==

0xdeadbeef
à add_bash()

à magic1 ==
0xcafebabe

à magic2 ==
0x0badf00d

à exec_string()
à Spawn shell

Execution Path



Page § 7

Return Chaining

First Function Address
Next Function Address

Arguments1 for First Function
Arguments2 for First Function

…



Page § 8

Return Chaining

Dummy Character “A”s
Address for Add_bin()
Address for pop_ret

0xdeadbeef
Address for Add_bash()

Add_bin() Add_bash()

à add_bin()
à magic == 0xdeadbeef

à add_bash()
à magic1 == 0xcafebabe
à magic2 == 0x0badf00d

à exec_string()
à Spawn shell

Execution Path

Exec_string()

The previous ROP chain does not work, 
because argument
0xdeadbeef is still on the stack, we need to find 
a way to ”clean” it

à magic == 0xdeadbeef

Solution: use a pop, ret gadget to push the 
argument 0xdeadbeef into a register to remove it from the stack



Page § 9



Page § 10

ELF (Executable Linkable Format)



Page § 11

ELF executable for Linux

Executable and Linkable Format (ELF)

Linux Windows
ELF file .exe (PE)
.so (Shared object file) .dll (Dynamic Linking

Library)
.a .lib (static linking library)
.o (intermediate file between
complication and linking,
object file)

.obj



Page § 12

ELF executable for Linux

• ELF32-bit LSB
• Dynamically linked



Page § 13

Section (or Segment) in ELF

File Header
.text section
.data section

.bss (Block started by
symbol) section

ELF file /
Object file



Page § 14



Page § 15

rop2.c

Since the binary is not big enough to 
give us a decent number of ROP 
gadgets, we will cheat a bit and 
compile the binary as a statically 
linked ELF. 
This should include library code in the 
final executable and bulk up the size of 
the binary. 



Page § 16

Linux System Call

§ f we take a look at the syscall reference, we can see that some 
parameters are expected in the eax, ebx, ecx, and edx registers.
– eax - holds the number of the syscall to be called
– ebx - a pointer to the string containing the file name to be executed

– ecx - a pointer to the array of string pointers representing argv
– edx - a pointer to the array of string pointers representing envp

§ For our purposes, the value that each of the registers should contain are:

eax = 0xb 
ebx = "/bin/sh" 
ecx = memory address -> 0 
edx = memory address -> 0



Page § 17

ROPgadget



Page § 18

Dynamic Linking



Page § 19

rop2.c

Since the binary is not big enough to 
give us a decent number of ROP 
gadgets, we will cheat a bit and 
compile the binary as a statically 
linked ELF. 
This should include library code in the 
final executable and bulk up the size of 
the binary. 



Page § 20

Drawbacks of Static Linking

Program2
Program2.o
Lib.o

Program1
Program1.o
Lib.o

Memory

Program2
Program2.o
Lib.o

Program1
Program1.o
Lib.o

Waste space
Hard to maintain



Page § 21

Dynamic Linking

Program2
Program2.o

Program1
Program1.o Memory

Program2
Program2.o

Program1
Program1.o

Lib.so
Lib.o

Lib.so
Lib.o



Page § 22

Dynamic Linking in Linux and Windows

Linux Windows
ELF file .exe (PE)
.so (Shared object file) .dll (Dynamic Linking

Library)
.a .lib (static linking library)
.o (intermediate file between
complication and linking,
object file)

.obj



Page § 23

Shared library

• ELF is loaded by ld-linux.so.2 à in charge of memory mapping,
load shared library etc..

• You can call functions in libc.so.6



Page § 24

Return Orientated Programming (ROP)

What happens if the binary we have to attack is not large 
enough to provide us the gadgets we need?



Page § 25

ret2libc Attack



Page § 26

Introduction

“Getting around non-executable stack (and fix)”, Solar Designer 
(BUGTRAQ, August 1997) 

https://seclists.org/bugtraq/1997/Aug/63

The ret2libc and return oriented programming (ROP) 
technique relies on overwriting the stack to create a new 
stack frame that calls the system function.



Page § 27

ret2libc Attack

§ We were able to pick from a wealth of ROP gadgets to construct the ROP 
chain in the previous section because the binary was huge. 

§ Now, what happens if the binary we have to attack is not large enough 
to provide us the gadgets we need?

§ One possible solution, since ASLR is disabled, would be to search for our 
gadgets in the shared libraries loaded by the program such as libc.

§ However, if we had these addresses into libc, we could simplify our 
exploit to reuse useful functions. One such useful function could be 
the system() function.



Page § 28

libc

§ C standard library 
§ Provides functionality for string handling, mathematical computations, 

input/output processing, memory management, and several other 
operating system services
– <stdio.h>
– <stdlib.h>
– <string.h>

However, if we had these addresses into libc, we could 
simplify our exploit to reuse useful functions. One such 
useful function could be the system() function. 
à find System() function’s address



Page § 29

reveal_address.c



Page § 30

reveal_adddress 32 bit version

Memory

/lib32/libc-2.27.so

/lib32/libc-2.27.so



Page § 31

reveal_adddress 64 bit version

Memory

/lib/x86_64-linux-gnu/libc-2.27.so

/lib/x86_64-linux-
gnu/libc-2.27.so



Page § 32

Ret2lib Shellcode Structure

Dummy Characters
Address for System() in libc
Address for Exit() function in libc (if you want to exit the program gracefully)
Address for Command String (“e.g. /bin/sh”)

Function Address

Return Address (Old EIP)

Arguments



Page § 33

ret2lib.c

Dummy Characters
Address for System() in libc
Address for Exit() function in libc (if you want to exit the program gracefully)
Address for Command String (“e.g. /bin/sh”)



Page § 34

ASLR in Depth
(not really…)



Page § 35

Shutdown ASLR

Shutdown ASLR (Address space layout randomization)



Page § 36

Address Space Layout Randomization (ASLR)

• Address Space Layout Randomization (ASLR) is a technology used 
to help prevent shellcode from being successful. 

• It does this by randomly offsetting the location of modules and 
certain in-memory structures.



Page § 37

Glossary of Terms

§ ASLR (Address Space Layout Randomization): Security measure in modern OSes to 
randomize stack and libc addresses on each program execution.

§ Binary: A binary is the output file from compiling a C or C++ file. Anything in the binary has 
a constant address.

§ Canary: A canary is some (usually random) value that is used to verify that nothing has 
been overrwritten. Programs may place canaries in memory, and check that they still have 
the exact same value after running potentially dangerous code, verifying the integrity of that 
memory.

§ NX (Non-Executable): Security measure in modern OSes to separate processor 
instructions (code) and data (everything that's not code.) This prevents memory from being 
both executable and writable.

§ ROP (Return Oriented Programming): Reusing tiny bits of code throughout the binary to 
construct commands we want to execute.

§ Stack: The stack is part of the memory for a binary. Local variables and pointers are often 
stored here. The stack can be randomized.

§ libc: A binary is dynamically linked and has a libc file. This means that the whole 
set of standard library functions are located somewhere in the memory used by 
the program.



Page § 38


