
CSC 472 Software Security
Return-oriented programming

(ROP)
Dr. Si Chen (schen@wcupa.edu)

Class9

Page § 2

Review

Page § 3

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

New Return Address – Hacked()

Page § 4

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

\x4d\x55\x55\x56

Page § 5

Figure out the Length of Dummy Characters with PEDA

§ pattern -- Generate, search, or write a cyclic pattern to memory
§ What it does is generate a De Brujin Sequence of a specified length.
§ A De Brujin Sequence is a sequence that has unique n-length

subsequences at any of its points. In our case, we are interested in
unique 4 length subsequences since we will be dealing with 32 bit
registers.

§ This is especially useful for finding offsets at which data gets written into
registers.

https://en.wikipedia.org/wiki/De_Bruijn_sequence

Page § 6

Use Pwntool to write Python Exploit Script

Page § 7

Jump to Shellcode

§ When the function is done it will jump to whatever address is on the stack.
§ We put some code in the buffer and set the return address to point to

it!

Small Program

New Return Address

Page § 8

Crafting Shellcode (the small program)

Extracting the bytes gives us the shellcode:

\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\x
b2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f

Page § 9

Finding a possible place to inject shellcode

Small Program

New Return Address

\xeb\x19\x31\xc0\x31\xdb\x31\xd
2\x31\xc9\xb0\x04\xb3\x01\x59\x
b2\x05\xcd\x80\x31\xc0\xb0\x01\
x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f

Use GDB to figure out
the memory address of
the beginning of the
buffer

Page § 10

NOP slide

Page § 11

NOP slide

Small Program

New Return Address

\xeb\x19\x31\xc0\x31\xdb\x31\xd
2\x31\xc9\xb0\x04\xb3\x01\x59\x
b2\x05\xcd\x80\x31\xc0\xb0\x01\
x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f

\x90\x90\x90\x90\x90\x9
0\x90\x90\x90\x90\x90\x
90\x90\x90\x90\x90\x90

Page § 12

Classic Exploitation Illustration

Page § 13

Classic Exploitation Illustration

Page § 14

Classic Exploitation Illustration

Page § 15

Classic Exploitation Illustration

Page § 16

Classic Exploitation Illustration

Page § 17

Compile the code

gcc -m32 –fno-stack-protector –zexecstack –o ./overflow2 ./overflow2.c

Page § 18

No eXecute (NX)

§ -zexecstack
§ Also known as Data Execution Prevention (DEP), this protection marks

writable regions of memory as non-executable.
§ This prevents the processor from executing in these marked regions of

memory.

Page § 19

No eXecute (NX)

After the function returns, the program will set the instruction pointer
to 0xbfff0000 and attempt to execute the instructions at that address.
However, since the region of memory mapped at that address has no
execution permissions, the program will crash.

Page § 20

No eXecute (NX)

Thus, the attacker's exploit is thwarted.

Page § 21

Data Execution Prevention (DEP): No eXecute bit (NX)

NX bit is a CPU feature
– On Intel CPU, it works only on x86_64 or with Physical

Address Extension (PAE) enable

Enabled, it raises an exception if the CPU tries to
execute something that doesn't have the NX bit set

The NX bit is located and setup in the Page Table
Entry

Page § 22

Page Table

• Each process in a multi-tasking OS runs in its own memory
sandbox.

• This sandbox is the virtual address space, which in 32-bit mode
is always a 4GB block of memory addresses.

• These virtual addresses are mapped to physical memory by page
tables, which are maintained by the operating system kernel and
consulted by the processor.

• Each process has its own set of page tables.

Page § 23

Page Table

To each virtual page there corresponds one page table entry (PTE) in
the page tables, which in regular x86 paging is a simple 4-byte record
shown below:

Page § 24

Data Execution Prevention (DEP): No eXecute bit (NX)

● The last bit is the NX bit (exb)

– 0 = disabled

1 = enabled–

Page § 25

Return-oriented programming
(ROP)

Page § 26

ROP Introduction

● When Good Instructions Go Bad: Generalizing Return-
Oriented Programming to RISC
[1] -Buchanan, E.; Roemer, R.; Shacham, H.; Savage, S. (October 2008)

● Return-Oriented Programming: Exploits Without Code Injection
[2] - Shacham, Hovav; Buchanan, Erik; Roemer, Ryan; Savage, Stefan.

Retrieved 2009-08-12.

Page § 27

Page § 28

Ordinary programming: the machine level

insn insn insn insn

instruction
pointer

• Instruction pointer (EIP) determines which instruction to fetch
& execute

• Once processor has executed the instruction, it automatically
increments EIP to next instruction

• Control flow by changing value of EIP

Page § 29

EIP

• Instruction pointer (EIP) determines which instruction to fetch & execute
• Once processor has executed the instruction, it automatically increments EIP to next

instruction
• Control flow by changing value of EIP

Page § 30

Return-oriented programming: the machine level

stack
pointer

• Stack pointer (ESP) determines which instruction sequence to
fetch & execute

• Processor doesn’t automatically increment ESP; — but the “ret” at
end of each instruction sequence does

insns … ret

insns … ret

C library
insns … ret

insns … ret

insns … ret

Page § 31

ESP – Always pointing to the top of the stack

• Stack pointer (ESP) determines which instruction sequence to fetch & execute
• Processor doesn’t automatically increment ESP; — but the “ret” at end of each

instruction sequencedoes

Page § 32

ROP: The Main Idea

Page § 33

ROP Gadget

“The Gadget”: July 1945

Page § 34

Attack Process on x86

● So, the real execution is:

• Gadget1 is executed and returns
• Gadget2 is executed and returns
• Gadget3 is executed and returns

Page § 35

How can we find gadgets?

Several ways to find gadgets
• Old school method : objdump and grep
• Some gadgets will be not found: objdump aligns

instructions

• Make your own tool which scans an executable
segment

• Use an existing tool

Page § 36

Finding instruction sequences

• Any instruction sequence ending in “ret” is useful —
could be part of a gadget

• Algorithmic problem: recover all sequences of valid
instructions from libc that end in a “ret” insn

• Idea: at each ret (c3 byte) lookback:
• are preceding i bytes a valid length-i insn?
• recurse from found instructions

• Collect instruction sequences in a trie

Page § 37

ROPgadget

Page § 38

main()
à vulnerable_function
(hacked)
à add_bin()
à add_bash()
à exec_string()
à Spawn shell

Execution Path

Page § 39

x

à add_bin()
à magic ==

0xdeadbeef
à add_bash()

à magic1 ==
0xcafebabe

à magic2 ==
0x0badf00d

à exec_string()
à Spawn shell

Execution Path

Page § 40

Basic Structure of
Return Chaining

Page § 41

Return Chaining

Function Address

Return Address (Old EIP)

Arguments

Page § 42

Return Chaining

Dummy Character “A”s
Address for Add_bin()

Address for Add_bash()
Address for exec_string()

Add_bin() Add_bash()

main()
à vulnerable_function (hacked)
à add_bash()
à add_bin()
à exec_string()
à Spawn shell

Execution Path

Exec_string()

Without parameters, the ROP chain
looks much simpler

Similarly to lab1,
we use gdb to
adjust the length of
the dummy
characters to
trigger buffer
overflow

Page § 43

Return Chaining

Dummy Character “A”s
Address for Add_bin()

Address for Add_bash()
0xdeadbeef

Address for exec_string()

Add_bin() Add_bash()

à add_bin()
à magic == 0xdeadbeef

à add_bash()
à magic1 == 0xcafebabe
à magic2 == 0x0badf00d

à exec_string()
à Spawn shell

Execution Path

Exec_string()

For add_bin(), we need to pass 0xdeadbeef,
So the ROP chain looks like:

à magic == 0xdeadbeef

Function Address

Return Address
(Old EIP)

Arguments Broken link

Page § 44

Return Chaining

Dummy Character “A”s
Address for Add_bin()
Address for pop_ret

0xdeadbeef
Address for Add_bash()

Add_bin() Add_bash()

à add_bin()
à magic == 0xdeadbeef

à add_bash()
à magic1 == 0xcafebabe
à magic2 == 0x0badf00d

à exec_string()
à Spawn shell

Execution Path

Exec_string()

The previous ROP chain does not work,
because argument
0xdeadbeef is still on the stack, we need to find
a way to ”clean” it

à magic == 0xdeadbeef

Solution: use a pop, ret gadget to push the
argument 0xdeadbeef into a register to remove it from the stack

Page § 45

Return Chaining

Dummy Character “A”s
Address for Add_bin()
Address for pop_ret

0xdeadbeef
Address for Add_bash()

Address for pop_pop_ret
0xcafebabe
0x0badf00d

Add_bin() Add_bash()

à add_bin()
à magic == 0xdeadbeef

à add_bash()
à magic1 == 0xcafebabe
à magic2 == 0x0badf00d

à exec_string()
à Spawn shell

Execution Path

Exec_string()

For add_bash(), we need to pass 0xcafebabe
and 0x0badf00d,
So we need to pop twice to remove both of
them from the stack

à magic1 == 0xcafebabe
à magic2 == 0x0badf00d

Page § 46

Return Chaining

Dummy Character “A”s
Address for Add_bin()
Address for pop_ret

0xdeadbeef
Address for Add_bash()
Address for pop_pop_ret

0xcafebabe
0x0badf00d

Address for exec_string()

Add_bin() Add_bash()

à add_bin()
à magic == 0xdeadbeef

à add_bash()
à magic1 == 0xcafebabe
à magic2 == 0x0badf00d

à exec_string()
à Spawn shell

Execution Path

Exec_string()

Finally, call exec_string()

Page § 47

Page § 48

