
CSC 472 Software Security
System Call, Shellcode

Calling Convention
Dr. Si Chen (schen@wcupa.edu)

Class6

Page § 2

System Call

Page § 3

System Call

§ A system call, sometimes referred to as a kernel call, is a request in
a Unix-like operating system made via a software interrupt by an active
process for a service performed by the kernel.

Page § 4

System Call

§ User code can be arbitrary
§ User code cannot modify kernel memory
§ The call mechanism switches code to kernel mode

Page § 5

What is System Call?

§ System resources (file, network, IO, device) may be accessed by multiple
applications at the same time, can cause confliction.

§ Modern OS protect these resources.

§ E.g. How to let a program to wait for a while?

100Mhz CPU -> 1s
1000Mhz CPU -> 0.1s

Use OS provide Timer

Page § 6

What System Call?

§ Let an application to access system resources.
§ OS provide an interface (System call) for the application
§ It usually use the technique called “interrupt vector”

– Linux use 0x80

– Windows use 0x2E

In system programming, an interrupt is a signal to the processor emitted by
hardware or software indicating an event that needs immediate attention. An
interrupt alerts the processor to a high-priority condition requiring the interruption
of the current code the processor is executing. The processor responds by
suspending its current activities, saving its state, and executing a function called
an interrupt handler (or an interrupt service routine, ISR) to deal with the event.
This interruption is temporary, and, after the interrupt handler finishes, the
processor resumes normal activities.[1] There are two types of interrupts:
hardware interrupts and software interrupts. – From Wikipedia

https://en.wikipedia.org/wiki/System_programming
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Function_(programming)
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Interrupt

Page § 7

CPU Interrupt

User Mode Execution Interruption occurred

Interrupt Vector Table Interrupt Handler

Next instruction

User Mode

Kernel Mode

Page § 9

fwrite() path in both Linux and Windows

fwrite()

write()

interrupt 0x80

sys_write()
Kernel

fwrite()

write()

NtWriteFile()

Interrupt 0x2e

IoWriteFile()
Kernel

Application

C
Run
Time
Library

API (Windows)

Kernel

./program program.exe

Libcmt.lib
msvcr90.dll

Kernel32.dll

NTDLL.dll

NtosKrnl.exe

libc.a
libc.so
libc.a
libc.so

./vlinuxz

Page § 10

Linux System Call

http://syscalls.kernelgrok.com

http://syscalls.kernelgrok.com/

Page § 11

Page § 12

Trace by strace (linux)
§ strace /bin/echo AAAAA

system call

Page § 13

Example: Hello World

helloworld.asm

Quick review:
•DB - Define Byte. 8 bits
•DW - Define Word. Generally 2 bytes on a
typical x86 32-bit system
•DD - Define double word. Generally 4 bytes on
a typical x86 32-bit system

From x86 assembly tutorial,

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Page § 14

Example: launch a shell

shell.asm

Page § 15

Some Useful System Call

§ open/read/write

§ mmap/mprotect
– mmap:use to allocate an executable area
– mprotect: disable data executable prevention

§ execve
– execve(char* path, char* argv[], char* envp[]);
– path: path to the executable file

– argv: arguments (char* pointer array)
– envp: environment variable (char* pointer array)

Page § 16

Libc Wraps Syscalls

§ What is Libc?: Libc is the C Standard Library as a library of routines that software
applications commonly use.
– Many of its functions are wrappers for system calls.

§ Why Wrappers?
1.Ease of Use: Syscalls often have a lower-level interface that is not convenient to use

directly.
2.Portability: Using Libc makes it easier to write portable code, as the library handles the

platform-specific details.
3.Error Handling: Libc functions usually provide higher-level error handling compared to raw

syscall interfaces.

Examples
1.File Operations:

1. fopen() vs open()
2. fclose() vs close()

2.Memory Allocation:
1. malloc() vs mmap() or sbrk()

3.Process Creation:
1. fork() in Libc vs clone() syscall in Linux

4.Time and Sleep:
1. sleep() in Libc vs nanosleep() syscall

https://codebrowser.dev/glibc/glibc/malloc/malloc.c.html

Page § 17

Syscall Summary

§Linux Syscall use fastcall
– specific syscall # is loaded into eax

– arguments for call are placed in different registers
– int 0x80 executes call to syscall()
– CPU switches to kernel mode

– each syscall has a unique, static number

Page § 18

Shellcode

Shellcode
Shellcode is defined as a set of instructions injected and then executed by an
exploited program. Shellcode is used to directly manipulate registers and the
functionality of a exploited program.

Page § 19

Crafting Shellcode (the small program)

Example: Hello World

hello.asm

Page § 20

Crafting Shellcode (the small program)

Example: Hello (hello.asm)

To compile it use nasm:

Use objdump to get the shellcode bytes:

Page § 21

Crafting Shellcode (the small program)

Extracting the bytes gives us the shellcode:

\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\x
b2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f

Page § 22

Test Shellcode (helloworld_shellcode.c)

Page § 23

Shellcode

§ Taking some shellcode from Aleph One's 'Smashing the Stack for
Fun and Profit'

shellcode =
("\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" +
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" +
"\x80\xe8\xdc\xff\xff\xff/bin/sh")

Page § 24

Page § 25

Calling Convention

Page § 26

Two Questions

§ Q: When a function finished, how to handle the parameter left in the stack.

§ Q: When a function finished, how change the ESP value?

A: We don’t care…

A: ESP should be restored to the previous value

Page § 27

Standard C Calling Conventions

§ Calling conventions are a standardized method for functions to be
implemented and called by the machine.

§ A calling convention specifies the method that a compiler sets up to
access a subroutine.

§ There are three major calling conventions that are used with the C
language on 32-bit x86 processors:
– CDECL

– STDCALL,
– FASTCALL.

Page § 28

CDECL

§ The C language, by default, uses the CDECL calling convention
§ In the CDECL calling convention the following holds:

– Arguments are passed on the stack in Right-to-Left order, and return values are
passed in eax.

– The calling function cleans the stack. This allows CDECL functions to
have variable-length argument lists.

Page § 29

STDCALL

§ The C language, by default, uses the CDECL calling convention
§ In the CDECL calling convention the following holds:

– Arguments are passed on the stack in Right-to-Left order, and return values are
passed in eax.

– The calling function cleans the stack. This allows CDECL functions to
have variable-length argument lists.

Page § 30

STDCALL

§ STDCALL, also known as "WINAPI" (and a few other names, depending
on where you are reading it) is used almost exclusively by Microsoft as
the standard calling convention for the Win32 API.
– STDCALL passes arguments right-to-left, and returns the value in eax.
– The called function cleans the stack, unlike CDECL. This means that

STDCALL doesn't allow variable-length argument lists.

Page § 31

STDCALL

§ STDCALL, also known as "WINAPI" (and a few other names, depending
on where you are reading it) is used almost exclusively by Microsoft as
the standard calling convention for the Win32 API.
– STDCALL passes arguments right-to-left, and returns the value in eax.
– The called function cleans the stack, unlike CDECL. This means that

STDCALL doesn't allow variable-length argument lists.

RET 8 è RET + POP 8 Byte

Page § 32

FASTCALL

§ The FASTCALL calling convention is not completely standard across all
compilers, so it should be used with caution.

§ The calling function most frequently is responsible for cleaning the stack,
if needed.

