
CSC 472 Software Security
Intro to Web Security

Dr. Si Chen (schen@wcupa.edu)

Class14

Page § 2

The Evolution of Web Applications

§ In the early days of the Internet, the World Wide Web (WWW) consisted
only of websites.
– essentially information repositories containing static documents.

Page § 3

The Evolution of Web Applications

• Today, the majority of sites on the web are in fact applications.
• Highly functional
• Rely on two-way flow of information between the server and browser.

Page § 4

THE WEB IS SIMPLE

§ Hyper Text Transfer Protocol (HTTP)
§ Designed to allow remote document retrieval
§ Simple client server model:

Client Server

Page § 5

The Reality

§ Web application security is massively complex.
§ Constant evolving field

– ES6, ES8, HTML5, CSS3, AJAX…

§ .

http://www.evolutionoftheweb.com/

Page § 6

Typical Web Application Stack

§ Browser (client)
§ HTTP over TCP/IP
§ Server

– Operating system

– Web Server
– Scripting Language
– Database or persistence layer

Page § 7

Just the client

§ Many different clients, all implementing differently (Chrome, Firefox, Edge,
IE, Safari, Opera, etc…)

§ The breakdown of the client-server divide
– The functional boundaries between client and server responsibilities were

quickly eroded

JavaScript

1. JavaScript allows for client side programming (responsive user
interface (UI))

2. Plug-in’s allow for store data locally (jStorage)
3. AJAX allows display multiple HTML sources in one page

Page § 8

Fertile Ground

§Web application security is massively complex in reality:
– Security researchers specialize in specific portions of the stack
– Protocols and specs exist but aren’t implemented uniformly
– The platforms are changing

• Smartphone, tablets, embedded systems, etc…

Page § 9

What’s Worse

§ In the browser world, the separation between high-level data objects
(documents), user-level code (applications) is virtually nonexistent.

§ Firewalls become irrelevant as everything flows over port 80 (http), 443
(https)

§ Web is becoming the default content and application deliver mechanism

Page § 10

Average Number of Vulnerabilities Identified within a Web Application

http://www.contextis.com/files/Web_Application_Vulnerability_Statistics_-_June_2013.pdf

Page § 11

Categories of Vulnerability

http://www.contextis.com/files/Web_Application_Vulnerability_Statistics_-_June_2013.pdf

Page § 12

Information Leakage

http://Local.mojolive.com/profile/eliw

Visible Error Handling

Page § 13

Authentication Weakness

Direct URL access to a protected file

Eli White, Web Security and You,page6

Page § 14

Authentication Weakness

Eli White, Web Security and You,page7

Ability to URL-hack to access unauthorized data.

Page § 15

Encryption Vulnerabilities

Low Security Hashes

1. Don’t just use MD5 (use SHA256, Blowfish,etc…) Even SHA-1 is better
2. Always salt your hashes

Page § 16

Various Attack Vectors

Now moving on to true ‘attacks’….

Page § 17

Attacking Data Stores: SQL Injection

§ SQL stands for Structured Query Language.
§ SQL is used to communicate with a database.

SQL Injection

Web Application Server

SQL Database

Page § 18

Attacking Data Stores: SQL Injection

§ It is common to build an SQL Database query based in part on a user
submission.
– User submits a login request, we need to check the database for a matching

account.

§ Malicious user know we will be building an SQL query.
– They can attempt to confuse the Database server by putting in special

characters

SQL Injection

Web Application Server

SQL Database

Page § 19

Attacking Data Stores: SQL Injection

§ A user having the ability to send data that is directly interpreted by your
SQL engine.

The Security Hole:

The Attack:

Page § 20

Attacking Data Stores: SQL Injection

§ Sanitize every value received from the user.
– Make sure there is no funny business going on
– Makes any string safe to put in a query

The Solution:

OR:

Page § 21

Attacking Data Stores: SQL Injection

http://sqlmag.com/content/content/43012/figure_01.gif

Page § 22

Other Injections

§ Command Injection: The user being able to inject code into a command
line

§ Unchecked File Uploads: The user being allowed to uploadan
executable file.

§ Code Injection: User being able to directly inject code.

https://security.web.cern.ch/security/recommendations/images/command_injection.png

becomes

Page § 23

Other Injection

§ Command Injection: The user being able to inject code into a command
line

§ Unchecked File Uploads: The user being allowed to uploadan
executable file.

§ Code Injection: User being able to directly inject code.

https://security.web.cern.ch/security/recommendations/images/command_injection.png

Page § 24

Real World Attacks

§ https://www.youtube.com/watch?v=Qb8-0zGiE7A

https://www.youtube.com/watch?v=Qb8-0zGiE7A

Page § 25

Real World Attacks

Page § 26

Attacking Session Management: Session Hijacking

§ The HTTP protocol is essentially stateless. It is based on a simple
request-response model.

§ Majority of web applications allow you to register and log in. To implement
this functionality, web apps need to use the concept of a session.

§ The vulnerabilities that exists in session management mechanisms largely
fall into two categories:
– Weakness in the generation of session tokens

– Weakness in the handling of session tokens throughout their life cycle

Page § 27

Attacking Session Management: Session Hijacking

§ One user ‘becoming’ another by taking over their session via
impersonation.
– Avoid “session Fixation”, don’t use URL cookies for your sessions
– Always regenerates Session IDs on a change of access level

– Save an anti-hijack token to another cookie & session. Require it to be present
& match. Salt on unique data (such as User Agent)

https://www.owasp.org/index.php/Session_hijacking_attack

Page § 28

Attacking Session Management: Session Hijacking

A user being able to provide a known session ID to another user.

The Attack:

The Solution:

Don’t use cookies for your sessions.

Protect from more complicated fixation attacks, by regenerating
sessions on change of access level.

Use anti-hijack measures to ensure user is legit

Page § 29

Attacking Users: Cross-Site Scripting (XSS)

§ The attacks we have considered so far involve directly targeting the sever-
side application.

§ Many of these attacks do impinge upon other users, such as SQL
injection. But the attacker’s essential methodology was to interact with
the server in unexpected ways to perform unauthorized actions and
access unauthorized data.

§ Cross-site scripting, however, are in a different category.
§ The attacker’s primary target: the application’s other users.

Basic idea: A user sending data that is executed as script

Page § 30

Attacking Users: Cross-Site Scripting (XSS)

§ XSS vulnerabilities come in various forms and may be divided into three
varieties: reflected, stored, and DOM-based.

§ They have important differences in how they can be identified and
exploited.

§ In all cases: Everything from a user is suspect (forms, user-agent,
headers, etc) when fixing, escape to the situation (HTML, JS, XML, etc)
FIEO (Filter Input, Escape Output)

§ We will examine each variety of XSS in turn.

Page § 31

Attacking Users: Cross-Site Scripting (XSS)

XSS- Reflected XSS:

Directly echoing back content from the user.

1. U
ser lo

gs in

2. Attacker feeds crafted URL to user

3.User re
quests

 attacke
r’s

URL

4. S
erver re

sponse with

atta
cker’s

 JavaScrip
t

6. User’s browser sends session token to attacker

7. Attacker hijacks

user’s session

Page § 32

Attacking Users: Cross-Site Scripting (XSS)

XSS- Reflected XSS:

Directly echoing back content from the user.

The Security Hole:

The Attack:

This type of simple XSS bug accounts for approximately 75% of the XSS
vulnerabilities that exists in real-world web apps.
It is called reflected XSS because exploiting the vulnerability involves crafting a
request containing embedded JavaScript that is reflected to any user who
makes the requests

Page § 33

XSS- Reflected XSS:

Directly echoing back content from the user.

http://twitter.com/index.php?%75%73%65%72%3D%3C%73%63%72%69%70%74%3E%61
%6C%65%72%74%28%31%32%33%29%3C%2F%73%63%72%69%70%74%3E

Twitter?

http://twitter.com/index.php?user=<script>alert(123)</script>

Page § 34

Attacking Users: Cross-Site Scripting (XSS)

XSS- Stored XSS:

You store the data, then later display it.

2. U
ser lo

gs in

3.User vi
ews a

ttacke
r’s

questio
n

4. S
erver re

sponse with

atta
cker’s

 JavaScrip
t

5. User’s browser sends session token to attacker

6. Attacker hijacks

user’s session

1.
Attacker submits question

containing malicious JavaScript

Page § 35

Attacking Users: Cross-Site Scripting (XSS)

XSS- Stored XSS:

You store the data, then later display it.

The Security Hole:

The Attack:

Page § 36

Attacking Users: Cross-Site Scripting (XSS)

XSS- DOM XSS:

What happens in JavaScript, stays in JavaScript.

1. U
ser lo

gs in

2. Attacker feeds crafted URL to user

3.User re
quests

 attacke
r’s

URL

4. S
erver re

sponse with

Page containing hard-coded JavaScrip
t

6. User’s browser sends session token to attacker

7. Attacker hijacks

user’s session

Page § 37

Attacking Users: Cross-Site Scripting (XSS)

XSS- DOM XSS:

What happens in JavaScript, stays in JavaScript.

1. A user requests a crafted URL supplied by the attacker and containing
embedded JavaScript

2. The server’s response does not contain the attacker’s script in any form
3. When the user’s browser process this response, the script is executed

nonetheless.

Page § 38

The Security Hole:

The Attack:

XSS- DOM XSS:

What happens in JavaScript, stays in JavaScript.

Page § 39

XSS is Everywhere

§ XSS is by far the most prevalent web app vulnerability
§ XSS is often misunderstood because the proof of concept (pop-up)

doesn’t demonstrate true attacker capability
§ XSS can lead to reputational damage, denial of service, and chained

exploit.
§ XSS can be used against site administrators

Page § 40

Attacking Users: Cross-Site Scripting (XSS)

Real-world Scenario of XSS Attack
Facebook makes use of PHP scripts. The following script became
vulnerable to cross-site scripting some time in July 2010:

www.facebook.com/ads/create/photos/creative_uploader.php
This script takes various parameters, one of which (controller_id) was
writing user input directly inside a script tag. Take the following URL as
example:
www.facebook.com/ads/create/photos/creative_uploader.php?controller_id=c4c288b438ed080&path=whate

ver&src=whatever&vol=90&w=60&h=80&post_upload=1

https://www.acunetix.com/websitesecurity/xss-facebook/

http://www.facebook.com/ads/create/photos/creative_uploader.php

Page § 41

Attacking Users: Cross-Site Scripting (XSS)

Real-world Scenario of XSS Attack
By inserting a double quote, an attacker is able to escape the Array’s key string
and insert JavaScript directly within a page on facebook.com.

Page § 42

Attacking Users: Cross-Site Scripting (XSS)

Real-world Scenario of XSS Attack
https://www.acunetix.com/websitesecurity/xss-facebook/

Page § 43

Why XSS detection is hard

§ Extremely difficult to automate tests for XSS
§ Often times XSS defense can be bypassed in clever ways
§ Developers should strive to use 3rd party libraries that are collaboratively

maintained

Page § 44

Attacking Users: CSRF (Cross Site Request Forgery)

§ In cross-site request forgery (CSRF) attacks, the attacker creates an
innocuous-looking website that causes the user’s browser to submit a
request directly to the vulnerable application to perform some
unintended action that is beneficial to the attacker.

§ Normally, “the same-origin” policy does not prohibit one website from
issuing requests to a different domain.

1. The request performs a privileged action. In the example shown, the request
creates a new user with administrative privileges

2. The application relies solely on HTTP cookies for tracking sessions. No
session-related tokens are transmitted else where within the request

3. The attacker can determine all the parameters required to perform the
action. Aside from the session token in the cookie, no unpredictable values
need to be included in the request.

Page § 45

Attacking Users: CSRF (Cross Site Request Forgery)

An attacker can construct a webpage that makes a cross-domain request
to the vulnerable application containing everything needed to perform the
privileged action.
Here is an example of such an attack.

This form will be automatically submitted. When the user’s browser
submits the form, it automatically adds the user’s cookies for the
target domain. If an admin user who is logged in the vulnerable app
visits this web page, the requests is processed within the
administrator’s session.

Page § 46

Attacking Users: CSRF (Cross Site Request Forgery)

§ Cross site request forgery is a trust exploit
§ The server trusts (wrongly) the browser request of users b/c

authentication cookies are supplied
§ Attacker forces the users browser to take action on their behalf
§ Clever way to take over web applications

Page § 47

Brute Force Attacks (Password)

§ CAPTCHA
§ IP rate limiting

Page § 48

