
CSC 472/583 Topics of Software Security
Heap Exploitation (4): Use After Free (UAF), Double Free

Kernel Exploitation
Dr. Si Chen (schen@wcupa.edu)

Class18

Page § 2

Review

Page § 3

House of Force

Unallocated
space

Top Chunk

Size = 0xxxxx

Unallocated
space

Top Chunk

Size = 0xxxxx

P0

Size = 0xxxxx

Unallocated
space

Top Chunk

Size =
0xFFFFFFFFFFFFFFFF

P0

Size = 0xxxxx

malloc p0

Overflow
and change

top chunk size

Page § 4

House of Force

Unallocated
space

Top Chunk

Size = 0xxxxx

Unallocated
space

Top Chunk

Size = 0xxxxx

P0

Size = 0xxxxx

Unallocated
space

Top Chunk

Size =
0xFFFFFFFFFFFFFFFF

P0

Size = 0xxxxx

malloc p0

Overflow
and change

top chunk size

• This attack assumes an overflow into the top chunk's header.
The size is modified to a very large value (-1 in this example).

• This ensures that all initial requests will be services using the
top chunk, instead of relying on mmap.

• On a 64 bit system, -1 evaluates to 0xFFFFFFFFFFFFFFFF.
• A chunk with this size can cover the entire memory space of the

program.

Page § 5

House of Force

E.g. top_chunk=0x601200

malloc(0xffe00020)

0xffe00030 < top_chunk_size

0xffe00030+0x601200=0x100401230

top_chunk=0x401230

Page § 6

House of Force

§ Prerequisites: Three malloc calls are required to successfully apply house
of force as listed below:
– Malloc 1: Attacker should be able to control the size of top chunk. Hence heap

overflow should be possible on this allocated chunk which is physically located
previous to top chunk.

– Malloc 2: Attacker should be able to control the size of this malloc request.
– Malloc 3: User input should be copied to this allocated chunk.

Page § 7

Metadata Corruption -- Unlink, House of Force

§ Metadata corruption based exploits involve corrupting heap metadata in
such a way that you can use the allocator’s internal functions to cause a
controlled write of some sort

§ Generally involves faking chunks, and abusing its different coalescing or
unlinking processes

Page § 8

Use After Free

§ Use After Free
– A class of vulnerability where data on the heap is freed, but a leftover reference

or ‘dangling pointer’ is used by the code as if the data were still valid
– Most popular in Web Browsers, complex programs
– Also known as UAF

Page § 9

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 10

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 11

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 12

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 13

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

§Dangling Pointer
– A left over pointer in your code that references free’d data and is prone

to be re-used
– As the memory it’s pointing at was freed, there’s no guarantees on what

data is there now
– Also known as stale pointer, wild pointer

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 14

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 15

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 16

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 17

Use After Free

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

§You actually don’t need any form of memory
corruption to leverage a use after free

§It’s simply an implementation issue
– pointer mismanagement

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Page § 18

Use After Free: PoC Example

Page § 19

Use After Free: PoC Example

Page § 20

Use After Free

The ‘hot’ vulnerability nowadays, almost every
modern browser exploit leverages a UAF

Page § 21

Use After Free

§From the defensive perspective, trying to detect use after free
vulnerabilities in complex applications is very difficult, even
in industry

§Why?
– UAF’s only exist in certain states of execution, so statically scanning

source for them won’t go far
– They’re usually only found through crashes, but symbolic execution

and constraint solvers are helping find these bugs faster

Page § 22

Double Free

§ Double Free
– Freeing a resource more than once can lead to memory leaks.
– The allocator's data structures get corrupted and can be exploited by an

attacker.

Page § 23

Page § 24

fastbin_dup.c

From how2heap
https://github.com/shellphish/how2heap/
blob/master/glibc_2.34/fastbin_dup.c

Page § 25

Introduction

Page § 26

Introduction

Page § 27

Introduction

Page § 28

Introduction

The kernel is also a program that:
• Manages the data I/O requirements

issued by the software
• Escaping these requirements into

instructions
• Handing them over to the CPU

Page § 29

Ring Model

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Page § 30

Ring Model

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Ring 1 and Ring 2 are not utilized by
most popular/modern Operating
Systems (Linux / Windows / OSX)

Page § 31

Ring Model

Page § 32

Ring Model

Page § 33

“Matrix”

Page § 34

Kernel Pwning

Page § 35

Jailbreak Game Console

Page § 36

Kernel Basics

Page § 37

Kernel Basics

Page § 38

Kernel Exploitation Strategy

Page § 39

Kernel Exploitation Strategy

You already know how to find these!

Kernel vulnerabilities are almost exactly the same as
userland vulnerabilities.

1. Stack Overflows
2. Heap Overflows

By now, finding these should be a familiar process

Page § 40

Kernel Exploitation Strategy

§ Monolithic Kernel
– Monolithic kernel is a single large processes running entirely in a single address

space. It is a single static binary file. All kernel services exist and execute in
kernel address space. The kernel can invoke functions directly.

LKMs

Page § 41

Kernel Exploitation Strategy

The most common place to find vulnerabilities is inside of
Loadable Kernel Modules (LKMs).

LKMs are like executables that run in Kernel Space.
A few common uses are listed below:

> Device Drivers
> Filesystem Drivers
> Networking Drivers
> Executable Interpreters
> Kernel Extensions
> (rootkits :P)

Page § 42

Kernel Exploitation Strategy

LKMs are just binary blobs like your familiar ELF’s, EXE’s
and MACH-O’s. (On Linux, they even use the ELF format)

You can drop them into GDB and reverse-engineer them
like you’re used to already.

Page § 43

Kernel Exploitation Strategy

There’s a few useful commands that deal with LKMs on
Linux.

insmod ---> Insert a module into the running kernel
rmmod ---> Remove a module from the running kernel
lsmod ---> List currently loaded modules

A general familiarity with these is helpful

Page § 44

Kernel Exploitation Strategy

Page § 45

Kernel Functions

§ fr

free() kfree()
(slab/slub allocator)

Page § 46

Kernel Debugging

Page § 47

Kernel Debugging

Page § 48

Kernel Debugging

Page § 49

Traditional UNIX credentials.

•Real User ID
•Real Group ID

Page § 50

Elevate Privileges

Remember: The Kernel manages running processes

Therefore: The Kernel keeps track of permissions

https://code.woboq.org/linux/linux/include/linux/cred.h.html#cred

https://code.woboq.org/linux/linux/include/linux/cred.h.html

Page § 51

Elevate Privileges

Conveniently, the Linux Kernel has two wrapper functions
for updating process credentials and generating process
credentials!

Page § 52

Elevate Privileges

Now we can map out what we need to do

commit_creds(prepare_kernel_cred(0));

We can find their addresses in /proc/kallsyms

Page § 53

Returning to UserSpace

Why bother returning to Userspace?

Most useful things we want to do are much easier from
userland.

In KernelSpace, there’s no easy way to:

> Modify the filesystem
> Create a new process
> Create network connections

Page § 54

Returning to UserSpace

How does the kernel do it?

This will usually get you out of “Kernel Mode” safely.

Page § 55

Returning to UserSpace

For exploitation, the easiest strategy is highjacking
execution, and letting the kernel return by itself.

> Function Pointer Overwrites
> Syscall Table Highjacking
> Use-After-Free

You need to be very careful about destroying Kernel state.

A segfault probably means a reboot!

Page § 56

Example: Babydriver

https://github.com/ctf-wiki/ctf-challenges/tree/master/pwn/kernel

https://github.com/ctf-wiki/ctf-challenges/tree/master/pwn/kernel

Page § 57

Page § 58

Kernel Space Protections

By now, you’re familiar with the alphabet soup of exploit
mitigations

Green: Present in Kernel Space
Yellow: Present, with caveats

DEP
ASLR
Canaries
etc...

There’s a whole new alphabet soup for Kernel Mitigations!

Page § 59

Kernel Space Protections

Some new words in our soup (There’s plenty more...)

MMAP_MIN_ADDR
KALLSYMS
RANDSTACK
STACKLEAK
SMEP / SMAP

Most of these will be off for the labs!

Page § 60

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low
Memory

Malicious
Program

0xffffffff

Page § 61

MMAP_MIN_ADDR

0x000000

Low
Memory

Malicious
Program

0xffffffff

This makes exploiting NULL pointer dereferences harder.

Program does mmap(0,....)

Page § 62

MMAP_MIN_ADDR

§ This makes exploiting NULL pointer dereferences harder.

§Program does mmap(0,....)

Program writes malicious Code

0x000000

Low
Memory

Malicious
Program

0xffffffff

Page § 63

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 Program does mmap(0,....)

Program writes malicious Code

Program triggers Kernel Bug

Kernel
Memory

Page § 64

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 Program does mmap(0,....)

Program writes malicious Code

Program triggers Kernel Bug

Kernel starts executing malicious
Code

Kernel
Memory

Page § 65

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Low
Memory

0xffffffff

Malicious
Program

0x000000 mmap_min_addr disallows
programs from allocating low
memory.

Makes it much more difficult to
exploit a simple NULL pointer
dereference in the kernel.

Kernel
Memory

Page § 66

KALLSYMS

/proc/kallsyms gives the address of all symbols in the
kernel.

We need this information to write reliable exploits without an
info-leak!

Page § 67

KALLSYMS

kallsyms used to be world-readable.

Now, it returns 0’s for unprivileged users

Can still be a useful source of information on older systems

Page § 68

SMEP / SMAP

SMEP: Supervisor Mode Execution Protection

Introduced in Intel IvyBridge

SMAP: Supervisor Mode Access Protection

Introduced in Intel Haswell

Page § 69

SMEP / SMAP

Common Exploitation Technique: Supply your own “get
root” code.

Low
Memory

Malicious
Program

0x000000
Kernel

Memory

0xffffffff

void get_r00t() {
commit_creds(prepare_kernel_cred(0));

}

int main(int argc, char * argv) {
…
trigger_fp_overwrite(&get_r00t);
…
//trigger fp use
trigger_vuln_fp();
// Kernel Executes get_r00t
...
// Now we have root
system(“/bin/sh”);

}

Page § 70

SMEP / SMAP

SMEP prevents this type of attack by triggering a page fault
if the processor tries to execute memory that has the “user”
bit set while in “ring 0”.

SMAP works similarly, but for data access in general

This doesn’t prevent vulnerabilities, but it adds considerable
work to developing a working exploit

We need to use ROP, or somehow get executable code into
kernel memory.

Page § 71

Conclusion

Page § 72

