cess 1.3

CSC 472/383 Topics of Software Security
Heap Exploitation (4): Use After Free (UAF), Double Free

Kernel Exploitation
Dr. Si Chen (schen@wcupa.edu)

Review

Page = 2

House of Force

Overflow
and change
malloc p0 top chunk size

=

House of Force

« This attack assumes an overflow into the top chunk's header.
The size is modified to a very large value (-1 in this example).

« This ensures that all initial requests will be services using the
top chunk, instead of relying on mmap.

 On a 64 bit system, -1 evaluates to OxFFFFFFFFFFFFFFFF.

* A chunk with this size can cover the entire memory space of the
program.

Overflow
and change

malloc p0 top chunk size

"3

Page = 4

E.g. top_chunk=0x601200

- TopChunk
malloc(0xffe00020) t ,

l
Oxffe00030 < top chunk_size
Oxffe00030+0x601200=0x100401230 | - ==taaas
top_chunk=0x401230
PO

Size = Oxxxxx

Size =
OxFFFFFFFFFFFFFFFF

Page = 5

House of Force

» Prerequisites: Three malloc calls are required to successfully apply house
of force as listed below:

— Malloc 1: Attacker should be able to control the size of top chunk. Hence heap
overflow should be possible on this allocated chunk which is physically located
previous to top chunk.

— Malloc 2: Attacker should be able to control the size of this malloc request.
— Malloc 3: User input should be copied to this allocated chunk.

Page = 6

Metadata Corruption -- Unlink, House of Force

» Metadata corruption based exploits involve corrupting heap metadata in
such a way that you can use the allocator’s internal functions to cause a
controlled write of some sort

» Generally involves faking chunks, and abusing its different coalescing or
unlinking processes

*(buffer-2) *(buffer-1)

Page = 7 [l

Use After Free

= Use After Free

— A class of vulnerability where data on the heap is freed, but a leftover reference
or ‘dangling pointer’ is used by the code as if the data were still valid

— Most popular in Web Browsers, complex programs
— Also known as UAF

Page = 8

Use After Free

<& 0x00000000

()
=
o)
=
n
t
®)
=
Q
et
Q
n

v

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\'4

<— OXFFFFFFF

Page = 9

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

<€ 0x00000000

()]
)
@)
=
wn
~+
o)
=
Q
P)
Q.
wn

<— OXFFFFFFF

Page = 10

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

<& 0x00000000

()
D
o
=
n
+
o
=
Q
3
Q
0n

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\'4

<— OXFFFFFFF

West
Chester,
University

Page = 11

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

0x00000000

()]
e
o
=
n
+
o
=
Q
"
Q
n
-d
(R
0Q
-
M
-
=
M
=
o
.
<

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
\'4

OXFFFFFFF

Page = 12

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

» Dangling Pointer
— A left over pointer in your code that references free’d data and is prone
to be re-used

— As the memory it's pointing at was freed, there’s no guarantees on what
data is there now

— Also known as stale pointer, wild pointer

ty
Page = 13 []i i
http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf ||@ﬂ

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

o
=
o
=
n
T
o
=
Q
=
Q.
n

|
|
I
|
I
|
|
|
|
I
|
I
I
|
|
|
I
|
|
I
|
|
|
|
I
|
|
|
I
I
|
I
I
\'4

< OXFFFFFFF

West
Chester
University

1
[l
http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf ||%!!

Page = 14

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

<& 0Xx00000000

()
S
)
=
n
+
o
=
Q
S
Q
0n

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\'4

<— OXFFFFFFF

Page = 15

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

o
=
o
=
n
+
o
=
Q
S
Q.
n

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\'4

<— OXFFFFFFF

Page = 16

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free

*You actually don’'t need any form of memory
corruption to leverage a use after free

"|lt's simply an implementation issue

— pointer mismanagement

ty
Page = 17 []i i,
http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10 lecture.pdf ||@ﬂ

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/17/10_lecture.pdf

Use After Free: PoC Example

int main()

4 {

char *pl;

pl = (char *)malloc(size
memcpy (pl,) -
printf(

free(pl);

char *p2;

p2 = (char *)malloc(sizeof
memcpy (p2 :
printf(
memcpy (p1,
prlntf(

’

Page = 18

Use After Free: PoC Example

int main()

A {

har *pl;
p1 (char *)malloc(size
memcpy (p1, ’) ;
printf(65X
free(pl);
char *p2;
p2 = ('hwr *)malloc(sizeof (ch:

memcpy (p2
printf(
memcpy (p1l,
prlntf(

’

-» heap ./uaf

P1 address:55756260, hello
P2 address:55756260, hello
P2 address:55756260, hack!

Use After Free

Search Results
|There are 3263 CVE entries that match your search.

Name Description
CVE-2019-9821 A use-after-free vulnerability can occur in AssertWorkerThread due to a race condition with shared workers. This results in a potentially
exploitable crash. This vulnerability affects Firefox < 67.
CVE-2019-9820 A use-after-free vulnerability can occur in the chrome event handler when it is freed while still in use. This results in a potentially exploitable
crash. This vulnerability affects Thunderbird < 60.7, Firefox < 67, and Firefox ESR < 60.7.
CVE-2019-9818 A race condition is present in the crash generation server used to generate data for the crash reporter. This issue can lead to a use-after-free in

the main process, resulting in a potentially exploitable crash and a sandbox escape. *Note: this vulnerability only affects Windows. Other
operating systems are unaffected.*. This vulnerability affects Thunderbird < 60.7, Firefox < 67, and Firefox ESR < 60.7.
CVE-2019-9796 A use-after-free vulnerability can occur when the SMIL animation controller incorrectly registers with the refresh driver twice when only a single

registration is expected. When a registration is later freed with the removal of the animation controller element, the refresh driver incorrectly
leaves a dangling pointer to the driver's observer array. This vulnerability affects Thunderbird < 60.6, Firefox ESR < 60.6, and Firefox < 66.

CVE-2019-9790 A use-after-free vulnerability can occur when a raw pointer to a DOM element on a page is obtained using JavaScript and the element is then
removed while still in use. This results in a potentially exploitable crash. This vulnerability affects Thunderbird < 60.6, Firefox ESR < 60.6, and
Firefox < 66.

CVE-2019-9767 Stack-based buffer overflow in Free MP3 CD Ripper 2.6, when converting a file, allows user-assisted remote attackers to execute arbitrary code

via a crafted .wma file.

CVE-2019-9766 Stack-based buffer overflow in Free MP3 CD Ripper 2.6, when converting a file, allows user-assisted remote attackers to execute arbitrary code
via a crafted .mp3 file.

CVE-2019-9706 Vixie Cron before the 3.0pl1-133 Debian package allows local users to cause a denial of service (use-after-free and daemon crash) because of a
force_rescan_user error.

CVE-2019-9489 A directory traversal vulnerability in Trend Micro Apex One, OfficeScan (versions XG and 11.0), and Worry-Free Business Security (versions 10.0,
9.5 and 9.0) could allow an attacker to modify arbitrary files on the affected product's management console.

CVE-2019-9458 In the Android kernel in the video driver there is a use after free due to a race condition. This could lead to local escalation of privilege with no
additional execution privileges needed. User interaction is not needed for exploitation.

CVE-2019-9447 In the Android kernel in the FingerTipS touchscreen driver there is a possible use-after-free due to improper locking. This could lead to a local
escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.

CVE-2019-9442 In the Android kernel in the mnh driver there is possible memory corruption due to a use after free. This could lead to local escalation of privilege
with System privileges required. User interaction is not needed for exploitation.

CVE-2019-9431 In Bluetooth, there is a possible out of bounds read due to a use after free. This could lead to remote information disclosure with heap information
written to the log with System execution privileges needed. User interaction is not needed for exploitation. Product: AndroidVersions: Android-
10Android ID: A-109755179

CVE-2019-9427 In Bluetooth, there is a possible information disclosure due to a use after free. This could lead to local information disclosure with no additional
execution privileges needed. User interaction is not needed for exploitation. Product: AndroidVersions: Android-10Android ID: A-110166350

CVE-2019-9381 In netd, there is a possible out of bounds read due to a use after free. This could lead to remote information disclosure with no additional
execution privileges needed. User interaction is not needed for exploitation. Product: AndroidVersions: Android-10Android ID: A-122677612

CVE-2019-9350 In Keymaster, there is a possible EoP due to a use after free. This could lead to local escalation of privilege with no additional execution privileges
needed. User interaction is not needed for exploitation. Product: AndroidVersions: Android-10Android ID: A-129562815

The ‘hot’ vulnerability nowadays, almost every
modern browser exploit leverages a UAF

Page = 20

Use After Free

» From the defensive perspective, trying to detect use after free
vulnerabilities in complex applications is very difficult, even
In industry

* \Why?

— UAF’s only exist in certain states of execution, so statically scanning
source for them won’t go far

— They’re usually only found through crashes, but symbolic execution
and constraint solvers are helping find these bugs faster

Page = 21

Double Free

= Double Free

— Freeing a resource more than once can lead to memory leaks.

— The allocator's data structures get corrupted and can be exploited by an
attacker.

Page = 22

Fast bin index 0 4

Chunksize(16 T 24

Main Arena

Chunks [j
[]

Page = 23

: Top chunk
n
, o TTTTTEEEEEEmm s mEmm \
I)
I |
Regular 1 2 3 64 65 126
bin index
2 Unsorted
Chunk size [bin I 16 24 = I 512 I 576 I >=262144*2]

Chunks

fastbin_dup.c

Binclude <stdio.h>
#include <stdlib.h>
#include <assert.h>

int mainQ)

{
setbuf(stdout, NULL);

printf("This file demonstrates a simple double-free attack with fastbins.\n");

printf("Fill up tcache first.\n");
void *ptrs[8];
for (int i=0; i<8; i++) {

ptrs[i] = malloc(8);

}

for (int i=0; i<7; i++) {
free(ptrs[i]);

}

printf("Allocating 3 buffers.\n");
int *a = calloc(l, 8);
int *b = calloc(l, 8);
int:*c = calloc(l, 8);

I

printf("1st calloc(l, 8): %p\n", a);
printf("2nd calloc(l, 8): %p\n", b);
printf("3rd calloc(l, 8): %p\n", c);

printf("Freeing the first one...\n");
free(a);

printf("If we free %p again, things will crash because %p is at the top of the free list.\n", a, a);
// free(a);

printf("So, instead, we'll free %p.\n", b);
free(b);

printf("Now, we can free %p again, since it's not the head of the free list.\n", a);
free(a); From how2heap
https://github.com/shellphish/how2heap/
blob/master/glibc_2.34/fastbin_dup.c

printf("Now the free list has [%p, %p, %p 1. If we malloc 3 times, we'll get %p twice!\n", a, b, a, a);

a = calloc(l, 8);
b = calloc(l, 8);
¢ = icalloc@l; -8);

printf("1st calloc(l, 8): %p\n", a);
printf("2nd calloc(l, 8): %p\n", b);
printf("3rd calloc(l, 8): %p\n", c);

assert(a == ¢);

Introduction

So far, we have been exploiting binaries running in
userspace.

Userspace is an abstraction that runs “on top” of the kernel.

Filesystem I/O

Privilege Levels (Per User/Per Group)
Syscalls

Processes

And so much more

A N

Introduction

So far, we have been exploiting binaries running in
userspace.

Userspace is an abstraction that runs “on top” of the kernel.

1. Filesystem |/O

2. Privilege Levels (Per User/Per Group)
3. Syscalls

4. Processes

5.

And so much more

These are all “services” provided by the Kernel

Introduction

What’s a Kernel?

Low Level code with two major responsibilities

1. Interact with and control hardware components
2. Provide an Environment in which Applications can run

The Kernel is the core of the operating system

Introduction

The kernel is also a program that:

Applications « Manages the data I/O requirements
) N issued by the software
Kernel « Escaping these requirements into

instructions
« Handing them over to the CPU

CPU Memory Devices

Page = 28

Ring Model

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Ring Model

Hardware Enforced Model

0: Privileged, Kernelspace

3: Restricted, Userspace

Ring 1 and Ring 2 are not utilized by
most popular/modern Operating
Systems (Linux / Windows / OSX)

Ring Model

We’ve Been Here \

Ring Model

We’ve Been Here \

We’'re Going Here

“Matrix”

“The Matrix is the world that has
been pulled over your eyes to »»»-f
you from the truth.” - Morpheus |

The kernel provides the “matrix”
your programs run in

Break out of the Matrix, and you
pwn the entire system

B o 7‘..1' 'v?

Kernel Pwning

“Jailbreaking” or “rooting” devices
often depends on finding and
leveraging Kernel bugs

Remember JailbreakMe?

It used a remote code execution
primitive inside Safari to trigger a
kernel-level exploit to bypass
Apple’s code-signing protection

Jailbreak Game Console

Page = 35

Kernel Basics

map dmar2
3 - not syncing: Ul‘s lhnbl to mount root fs on unknown-block(0,0)
:lhn swapper/0 Ta 16 1 4.13.11-gnu-1 #1
-- !.IIIIJ‘NM!MMI BIOS CBET4000 3774c98 09,/07,/2016

Your Kernel is:

Managing your Processes
Managing your Memory
Coordinating your Hardware

A crash oftentimes means a reboot!

In general, we want to spend as little time there as possible.

Kernel Basics

The Kernel is typically the most powerful place we
can find bugs

But, how do we go from “vulnerability” to “privileged
execution” without bringing down the rest of the
system?

Kernel Exploitation Strategy

Al o

Find vulnerability in kernel code
Manipulate it to gain code execution
Elevate our process’s privilege level
Survive the “trip” back to userland
Enjoy our root privileges

Kernel Exploitation Strategy

You already know how to find these!

are almost exactly the same as
userland vulnerabilities.

1. Stack Overflows
2. Heap Overflows

By now, finding these should be a familiar process

Kernel Exploitation Strategy

= Monolithic Kernel

— Monolithic kernel is a single large processes running entirely in a single address
space. It is a single static binary file. All kernel services exist and execute in
kernel address space. The kernel can invoke functions directly.

Monolithic kernel vs Microkernel

Monolithic OS kernel

_ .System call

Application - What was the main idea?

user _ What were the problems?

mode
VES

Microkernel
IPC, file system

Application Device
IPC driver
Scheduler, virtual memory
Kernel
mode
LKMS Device drivers, dispatcher ...
Hardware Hardware
Page = 40

IPC, virtual memory

Kernel Exploitation Strategy

The most common place to find vulnerabilities is inside of
(LKMs).

are like that run in Kernel Space.
A few common uses are listed below:

> Device Drivers

> Filesystem Drivers

> Networking Drivers

> Executable Interpreters
> Kernel Extensions

> (rootkits :P)

Kernel Exploitation Strategy

LKMs are just binary blobs like your familiar ELF's, EXE's
and MACH-O’s. (On Linux, they even use the ELF format)

You can drop them into GDB and reverse-engineer them
like you're used to already.

Kernel Exploitation Strategy

There’s a few useful commands that deal with LKMs on
Linux.

Insmod ---> Insert a module into the running kernel
rmmod ---> Remove a module from the running kernel
Ismod ---> List currently loaded modules

A general familiarity with these is helpful

Kernel Exploitation Strategy

The same basic exploitation techniques apply to Kernelspace
(After all, it’s just x86 codel!)

Shellcoding, ROP, Pointer Overwrites,
, etc can all be used to execute code in Kernel Land.

Kernel Functions

Common Library calls are sometimes different, so there is
a slight learning curve involved.

printf() —> printk()

memcpy() -—-> copy_from_user()/copy _to user()
malloc() -—-> kmalloc() (slab/slub allocator)
HEEN --=> kfree()

Typically, whatever you want to know is a quick google-search or
man page away.

Kernel Debugging

Debugging kernel code can be difficult
We can’t just run the kernel in

You will often have to rely on stack dumps, error messages, and
other “black box” techniques to infer what’s going on inside the

kernel.

Kernel Debugging

This is an example of what you
might see if you get a crash in
the kernel. setiab

01982ebcal EFFE00147dc4000 1111 |wrn*w 0L00 £EFLFLLEBLedZ

:\H 8001° ‘;\ ebeh8 LELLPLFFB1V2a7cY £ELFBOO147dc4000 £ffEBO19

OO01 £ FHE

I %“91‘ .nitvt‘n;l Call Trace: ,‘
[4265.8536731 [<KEPEEFFFF817318ed>] __ nf_ct_ext_destroy+0x3d/0x60
[KEFPEFFFF8172a7c9>1 nf _comntrack_free+0x29-,0x60

[4265.8537081
[4265.853741]1 [KEFFEFFFF8172b7ae>] destroy_commtrack+0x9e/0xd0
St k D [4265.8537741 [KEfFFFFFf8172eb?0>1 T nf_conntrack_helper_fini+0x30-,0x30
a C u m p [4265.853812]1 [KIfffffrff817271a2>1 nf_comtrack_destroy+0x12,0x20
[4265.853846]1 [KEFffffff8172b64b>]1 nf_ct_iterate_cleanup+0xch,/0x160
[KFEFFFFFFB172£0d43>1 nf_ct_13proto_pernet_unregister+0x33,0x70

[4265.8538811
[KEFFEFFFFB1791F88>]1 ipud_net_exit+0x18,0x50

Ca” Trace [4265.8539211
[4265.8539541 [KEfffffff816£3219>] ops_exit_list.isra.1+0x39/0x60
[4265.8539891 [KFfffffff816£f3b60>1 cleanup_net+0x100,0x1cO

Register Dum -
g p [4265.8540221 [<KEfffffff8105f6ff>]1 process_one_uork+0x17f/0x420
[4265.8540561 [<KFfffffff8105fde9>] worker_thread+0x119-,0x370
[KEFFFfFff8105fcd0>] 7 rescuer_thread+0x2f0,0x2f0

[4265.8540891
[4265.8541241 [<Ffffffff810668ab>] kthread+Oxbb/0xcO
[<KEFEFEFFFB10667f0>1 7 kthread_create_on_node+0x120,0x120

[4265.8541531
4265.8541921 [<Efffffff818f6cfc>] ret_from_fork+0x?c/0xbO

[4265.8542241 [<ffffffffB10667f0>]1 7 kthread_create_on_node+0x120,0x120

[4265.8542601 Code: 83 ec 68 Of b6 58 11 84 db 74 43 48 01 c3 48 83 7b 10 00 74 39 48 c? c

90 ad de 48 c?7
[4265.8544831 RIP [<ffffffffa00806cd>] nf_nat_cleanup_commtrack+0x3d/0x?0 [nf_natl

- 4265.854528]1 RSP <ffffB86801982ebcS8>

| 4265, 8545481 CRZ: ffffc90019536d20
4265.864159] Kernel panic - not syncing: Fatal exception in interrupt
4265.8642001 drm_kms_helper: panic occurred, switching back to text comsole

Kernel Debugging

This is an example of what you
might see if you get a crash in

f ri‘ £f8801982ebch8 fIIIIIffB172a7c9 fBB0147dc4000 ffffBBO19a12010

¢ 6071
t h e k e r n e I ‘ 4265 .8536541 Call Trace:
[4265.8536731 [<EEFFFFFf817318ed>] _ nf_ct_ext_destroy+0x3d/0x60
[4265.8537081 [<FEEFFFFFB8172a7c9>] nf_conntrack_free+0x29,/0x60
[4265.8537411 [KEFfFffff8172b7ae>]1 destroy_conntrack+0x9e/0xd0
[4265.8537741 [KEFFFFFFF8172eb?0>]1 7 nf_conntrack_helper_fini+0x30,/0x30
[4265.8538121 [KEPFffffFf817271a2>1 nf_conntrack_destroy+0x12/0x20
[KEFFFFFFFB172b64b>]1 nf_ct_iterate_cleanup+Oxcbh/0x160

[4265.853846]
[<KFFFFFFFFB172£0d3>]1 wf_ct_l13proto_pernet_unregister+0x33/0x?70

[4265.8538811
[4265.8539211 [KFFFFFFFFB1791£88>]1 ipud_net_exit+0x18,0x50

[4265.853954]1 [<KFfffffffB16£3219>] ops_exit_list.isra.1+0x39/0x60
[4265.853989]1 [<KFfffffff816£f3b60>]1 cleanup_net+0x100/0x1cO

[4265.8540221 [<FfffFFFFB105f6ff>]1 process_one_work+0x17f/0x420
[<EEFFFFFFB105fde9>] worker_thread+06x119/0x370

Stack Dump o
[4265.854089]1 [<EEELLFFBIO5Fcd0>] 7 rescuer_thread+Ox2f0,0x2f0
[4265.854124]1 [<EEELPFIB10668ab>] kthread+0xbb/OxcO
[4265.854153]1 [<EEFEEFFB1066790>] 7 kthread_create_on_node+0x120,0x120
C a | I T race [4265.854192] [<EFELEELPBIBI6CEC>] ret_from_forksOx7c/Oxbo
[4265.8542241 [<EREEPEE1B1066700>] 7 kthread_create_on_node+@x120,0x120
[4265.854260] Code: B3 ec 08 Of b6 58 11 B4 db 74 43 48 01 c3 48 B3 7b 10 00 74 39 48 c7 ¢

%0 ad de 48 c?
[4265.854483]1 RIP [<ffffffffa00B06cd>] nf_nat_cleanup_conntrack+0x3d/0x?0 [nf_natl

RegiSter Dump | 4265.8545281 RSP <ffff8801982ebc58>

. 4265.8545481 CR2: f£fffc90019536d20
4265.8641591 Kernel panic - not syncing: Fatal exception in interrupt
4265.8642001 drm_kms_helper: panic occurred, switching back to text console

You might be able to see this
with dmesg if the crash is not

fatal.

Traditional UNIX credentials.

-» give_to_player ls -1
‘Real User ID w196

rwxrwxr-x 1 schen schen 202 May 9 2019 boot.sh
-rw-rw-r-- 1 schen schen 4127776 May 9 2019 bzImage
.Real Group ID -rwxrwxr-x 1 schen schen 898440 Nov 18 01:43 exp
-rwxrwxr-x 1 schen schen 897912 Nov 18 01:33 exp0
-rw-rw-r-- 1 schen schen 722 Nov 18 01:33 exp0.c
-rw-rw-r-- 1 schen schen 1979 Nov 18 01:27 expl.c
-rwxrwxr-x 1 schen schen 902704 Nov 18 01:28 exp2
-rw-rw-r-- 1 schen schen 2061 Nov 18 01:28 exp2.c
-rwxrwxr-x 1 schen schen 898584 Nov 18 01:29 exp3
-rw-rw-r-- 1 schen schen 1072 Nov 18 01:29 exp3.c

drwxrwxr-x 12 schen schen 4096 Nov 18 01:35 fs

-rw-rw-r-- 1 schen schen 11913216 Nov 18 01:43 initramfs.img

- give_to_player id

uid=1000(schen) gid=1000(schen) groups=1000(schen),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lpadmin),b126(sambashare),450(hmacc
)

USER
schen

458 root 20
1186 gdm 20

1 root 20
379 root 20
801 root 20
804 root 20
791 root 20
796 messagebu 20
941 root 20
805 root pAC)
814 root 20
806 root pA)
824 root 20
828 root 20
899 root 20
909 root pAC)
807 root 20
1106 syslog 20
1107 syslog 20
1108 syslog 20
808 syslog 20
809 root pAC)

O1L mand N

VIRT RES
26568 4872
38232 3148 2752
665M 37460 18068
220M 9780 6884
29856 1228 1080
424M 9304 7884
424M 9304 7884
424M 9304 7884
143M 11200 8240
165M 16960 9092
165M 16960 9092
167M 3516 3180
107M 3516 3180
497M 12432 10104
497M 12432 10104
497M 12432 10104
497M 12432 10104
497M 12432 10104
347M 9980 7716
347M 9980 7716
347M 9980 7716
347M 9980 7716
62804 6304 5120

SODNE T20778 TTEO0

()]
=

sl oNoNoNoNoNoNoNoNoNoNoNoNoNoNololoNoNooN ool © U

T ORRRRERRRRERROORHERREREROORN O[S

Command
htop
3h56:48 @sbin/plymouthd --mode=boot --pid-file=/run/plymouth/pid --attach-to-ses
3h38:32 /usr/lib/gnome-settings-daemon/gsd-color
:28.36 /lib/systemd/systemd --system --deserialize 28
:00.00 /sbin/ureadahead -q
:00.00 /usr/sbin/ModemManager --filter-policy=strict
:01.04 /usr/sbin/ModemManager --filter-policy=strict
:01.37 /usr/sbin/ModemManager --filter-policy=strict
:36.43 /usr/bin/dbus-daemon --system --address=systemd: --nofork --nopidfile --
:00.00 /usr/bin/python3 /usr/bin/networkd-dispatcher --run-startup-triggers
:00.04 /usr/bin/python3 /usr/bin/networkd-dispatcher --run-startup-triggers
:00.00 /usr/sbin/irgbalance --foreground
:53.03 /usr/sbin/irgbalance --foreground
:00.00 /usr/lib/udisks2/udisksd
:00.78 /usr/lib/udisks2/udisksd
:00.00 /usr/lib/udisks2/udisksd
:00.00 /usr/lib/udisks2/udisksd
:05.08 /usr/lib/udisks2/udisksd
:17.49 /usr/sbin/rsyslogd -n
:00.01 /usr/sbin/rsyslogd -n
:59.20 /usr/sbin/rsyslogd -n
:17.01 /usr/sbin/rsyslogd -n
:14.41 /lib/systemd/systemd-1logind

e AA DO /Jiwevr/Zlsh/Z/arcrrmiinteceecearyis ra/srcrrmiinte Aaaman

w
(o]

>N oNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNooNoNol © H
NULULULULONnNnLNnmLmLmOLmOnnnononmonononon on el
>N oNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNOoRNENE ~] o°
>N oNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNooNoNol © [T1

el BV NolF NoloNoNoNoloNoNoNoNoNoNoNoNol

Elevate Privileges

Remember: The Kernel manages running processes

Therefore: The Kernel keeps track of permissions

1 | struct cred {
72 atomic_t usage;
3 | #ifdef CONFIG_DEBUG_CREDENTIALS
4 atomic_t subscribers; /* number of processes subscribed */
5 void *put_addr;
6 unsigned magic;
7 | #define CRED_MAGIC 0x43736564
8 | #define CRED_MAGIC_DEAD @x44656144
9 | #endif
10 kuid_t uid; /* real UID of the task */
11 kgid_t gid; /* real GID of the task */
12 kuid_t suid; /* saved UID of the task */
kgid_t sgid; /* saved GID of the task */
14 kuid_t euid; /* effective UID of the task */
15 kgid_t egid; /* effective GID of the task */
16 kuid_t fsuid; /* UID for VFS ops */
17 kgid_t fsgid; /* GID for VFS ops */
18 unsigned securebits; /* SUID-less security management */
19 kernel_cap_t cap_inheritable; /* caps our children can inherit */
20 kernel_cap_t cap_permitted; /* caps we're permitted */
21 kernel_cap_t cap_effective; /* caps we can actually use */
22 kernel_cap_t cap_bset; /* capability bounding set */
23 kernel_cap_t cap_ambient; /* Ambient capability set */
24 | #ifdef CONFIG_KEYS
25 unsigned char jit_keyring; /* default keyring to attach requested
26 * keys to */
27 struct key __rcu *session_keyring; /* keyring inherited over fork */
28 struct key *process_keyring; /* keyring private to this process */
29 struct key *thread_keyring; /* keyring private to this thread */
30 struct key *request_key_auth; /* assumed request_key authority */
31 | #endif
32 | #ifdef CONFIG_SECURITY
33 void *security; /* subjective LSM security */
34 | #endif
35 struct user_struct *user; /* real user ID subscription */
36 struct user_namespace *user_ns; /* user_ns the caps and keyrings are relative to. */ —
87 struct group_info *group_info; /* supplementary groups for euid/fsgid */ West
38 struct rcu_head rcu; /* RCU deletion hook */ tgl“’x"’m
39 | } __randomize_layout; \

https://code.woboq.org/linux/linux/include/linux/cred.h.html

Elevate Privileges

Conveniently, the Linux Kernel has two wrapper functions
for updating process credentials and generating process
credentials!

commit_creds(struct cred *new) {

struct cred *prepare_kernel cred(struct task_struct *daemon) {

Elevate Privileges

Now we can map out what we need to do

commit _creds(prepare_kernel cred(9));

We can find their addresses in /proc/kallsyms

/ $ cat /proc/kallsyms | grep commit creds
ffffffff810al420 T commit creds

frffffff81d88f60 R ksymtab commit creds
ffffffff81da84d0 r kcrctab commit creds
ffffifffSldb948c r kstrtab commit creds

/ $ cat /proc/kallsyms | grep prepare kernel cred
ffffffff810al810 T prepare kernel cred
fFFfffff81d91890 R _ ksymtab_prepare kernel cred
ffffffff81ldac968 r _ kcrctab_prepare_kernel cred
ffffffff81db9450 r _ kstrtab_prepare_kernel cred

Returning to UserSpace

Why bother returning to ?

Most useful things we want to do are much easier from
userland.

In KernelSpace, there’s no easy way to:

> Modify the filesystem
> Create a new process
> Create network connections

Returning to UserSpace

How does the kernel do it?

push SSS_USER_VALUE

push SUSERLAND_STACK

push SUSERLAND_EFLAGS

push SCS_USER_VALUE

push SUSERLAND_FUNCTION_ADDRESS
swapgs

iretq

This will usually get you out of “Kernel Mode” safely.

Returning to UserSpace

For exploitation, the easiest strategy is
execution, and letting the kernel return by itself.

> Function Pointer Overwrites
> Syscall Table Highjacking
> Use-After-Free

You need to be very careful about destroying Kernel state.

A probably means a !

Example: Babydriver

-» babydriver 1s -1
total 13228

-rwxrwxr-x 1 schen schen

216 Jul 4 2017 boot.sh
-rw-rw-r-- 1 schen schen 7009392 Jun 16 2017 bzImage

-rw-rw-r-- 1 schen schen 6528512 Nov 18 01:09 rootfs.cpio

https://github.com/ctf-wiki/ctf-challenges/tree/master/pwn/kernel

Page = 56

https://github.com/ctf-wiki/ctf-challenges/tree/master/pwn/kernel

Page = 57

Kernel Space Protections

By now, you're familiar with the alphabet soup of exploit
mitigations

DEP Green: Present in Kernel Space
ASLR Yellow: Present, with caveats
Canaries

etc...

There's a whole new alphabet soup for Kernel Mitigations!

Kernel Space Protections

Some new words in our SOUP (There’s plenty more...)

MMAP_MIN_ADDR
KALLSYMS
RANDSTACK
STACKLEAK
SMEP / SMAP

Most of these will be off for the labs!

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Malicious
Program

OxfFFFfffff

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

Program does mmap(0,....)

Malicious

Program

OxfFFfFfff

MMAP_MIN_ADDR

0x000000

Low
Memory

Malicious
Program

OxFFFFfff

NULL pointer dereferences

* Program does mmap(0,....)

Program writes malicious Code

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

0x000000 Program does mmap(0,....)

Kernel _ .
Memory Program writes malicious Code

Program triggers Kernel Bug

Malicious
Program
@

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

OXOOOOOO Program does mmap(O,)

Kernel . -
Memory Program writes malicious Code

Program triggers Kernel Bug

Malicious Kernel starts executing malicious
Program Code
@

MMAP_MIN_ADDR

This makes exploiting NULL pointer dereferences harder.

0x000000 mmap min_addr disallows

Kernel programs from allocating low
memory.

Makes it much more difficult to

exploit a simple NULL pointer
Malicious dereference in the kernel.
Program
o

KALLSYMS

gives the address of all symbols in the
kernel.

We need this information to write reliable exploits without an

ksymtab

kcrctab
kstrtab
softsec@@softsec-VirtualBox:~$

| it
TTHn

KALLSYMS

kallsyms used to be world-readable.

Now, it returns O’s for unprivileged users

softsec@softsec-VirtualBox:~$ cat /proc/kallsyms | grep commit_creds
00000000 T commit_creds

00000000 r _ ksymtab_commit_creds

00000000 r _ kcrctab_commit_creds

00000000 r __ kstrtab_commit_creds

Can still be a useful source of information on older systems

SMEP / SMAP

SMEP: Supervisor Mode Execution Protection

Introduced in Intel IvyBridge

SMAP: Supervisor Mode Access Protection

Introduced in Intel Haswell

SMEP / SMAP

Common Exploitation Technique: Supply your own “get

root” code.

void get_r00t() {
commit_creds(prepare_kernel _cred(0));

}
int main(int argc, char * argv) {
trigger_fp_overwrite(&get_r0O0t);

/ltrigger fp use
trigger_vuln_fp();

I/l Kernel Executes get rO0t
/l Now we have root
system(“/bin/sh”);

0x000000

Kernel
Memory

Malicious
Program

OxFFFfFfff

SMEP / SMAP

SMEP prevents this type of attack by triggering a
if the processor tries to execute memory that has the “user”
bit set while in “ring 0”.

SMAP works similarly, but for data access in general

This doesn’t prevent vulnerabilities, but it adds considerable
work to developing a working exploit

We need to use , or somehow get executable code into
kernel memory.

Conclusion

Kernel Exploitation is weird, but extremely powerful

As userland exploit-dev becomes more challenging and more
expensive, kernelspace is becoming a more attractive target.

A single bug can be used to bypass sandboxes, and gain root
privileges, which may otherwise be impossible

E A Guipe 10
) KERNEL EXPLOlTATIONv

®e

U &A

Page = 72

