Class

CSC 472/383 Topics of Software Securit

Intro to Web Security
Dr. Si Chen (schen@wcupa.edu)

The Evolution of Web Applications

* |[n the early days of the Internet, the World Wide Web (WWW) consisted

only of websites.

— essentially information repositories containing static documents.

I Find It

Product Information

| IR 1
@« Welcome to Apple

Customer Support

Technology & Research

Developer World

Groups & Interests

Resources Online

About Apple

What's Hot |

&

Register today for a free CD-ROM.

=0Tz 309

Mobile,
Affordable,
& Smart

VIUVIES
EROMAMARS!
HOTOXSINTEN B
Takeg You Ouf;

Preorder Mac OS 8

Apple Sites Worldwide
Now vou can preorder Mac

switzerland | OS 8. described by Macworld
| Taiwan as "the most comprehensive
| Turkey @l update to the Mac OS in

| UK & Ireland a
 United States 7

years, sporting a bold new
look, a speedier Finder, more

Page = 2

Be the First to Know

Learn about new Macintosh
software releases the moment
they become available. Check
Hot Mac Products to hear
about programs like Speed
Demon, ReBirth RB-338 and

The Evolution of Web Applications

Today, the majority of sites on the web are in fact applications.
« Highly functional

« Rely on two-way flow of information between the server and browser.

tchpad/

Mac OS [Science '® V2EX & Nintendo 3DS Hacker News [] Life Slashdot (25) (¥)) Gédel's Lost Letter HE—~AEamazon’ § About Sciwrite R @K g Codeforces &) Manage Your Accol [0 %ui% / ReadWise
COLOR opTions M
TOOLS DRAWING.PNG

H’ﬁ‘- i

7§ About Sciwrite MEPRAFEAK [y Codeforces &) Manag o1 [0 ®%2ie / ReadWise & Com ce Woovun(BMFEA: M Matrix67: My Blog

OII’T\O.]S dev.rev « Basic shape

D ® D

THE WEB IS SIMPLE

» Hyper Text Transfer Protocol (HTTP)

» Designed to allow remote document retrieval

= Simple client server model:

g

Page = 4

The Reality

= \Web application security is massively complex.

» Constant evolving field
— ES6, ES8, HTML5, CSS3, AJAX...

THE EVOLUTION OF THE WEB Browsers & Technologies
Java b e e s3I
ssssss
® e . A -
0.1 2 3
NetScape N ’4—. - - - i - _<QE N B
- Wt 12 E 4
i,
OOOOO)} AY g AN \ g - 1] \
0 N 21 3 7 S . 0.5
eeeeeeeeeeeeeeee ,\ ‘ ']
-~ [2 3 4

€553 Flexbox

http://www.evolutionoftheweb.com/

Typical Web Application Stack

= Browser (client)
= HTTP over TCP/IP

= Server
— Operating system
— Web Server
— Scripting Language
— Database or persistence layer

Full Stack Python

€ 9> C |Qhtpw

(www.quakeOday.com —

— sends index.html, which references style.css & script.js %

Web (GET style.css —
server — sends style.css > Web browser

& GET script.js —

— sends script.js)

Page = 6

Just the client

» Many different clients, all implementing differently (Chrome, Firefox, Edge,
|IE, Safari, Opera, etc...)

= The breakdown of the client-server divide

— The functional boundaries between client and server responsibilities were
quickly eroded

1. JavaScript allows for client side programming (responsive user
interface (Ul))

Plug-in’s allow for store data locally (jStorage)
AJAX allows display multiple HTML sources in one page

SEN

Page =7

Fertile Ground

* \Web application security is massively complex in reality:

— Security researchers specialize in specific portions of the stack
— Protocols and specs exist but aren’t implemented uniformly
— The platforms are changing

« Smartphone, tablets, embedded systems, etc...

[el |

Page = 8

* In the browser world, the separation between high-level data objects
(documents), user-level code (applications) is virtually nonexistent.

» Firewalls become irrelevant as everything flows over port 80 (http), 443
(https)

= Web is becoming the default content and application deliver mechanism

Page = 9

Average Number of Vulnerabilities Identified within a Web Application

Average Number of Vulnerabilities Identified within a Web
Application
3,5
n
2
= 3
Q
o
¢ 25 -
E]
> , m2010
- m201]1
2 §5
g 2012
Z 1 -
()
(o))
g 0'5 | I
>
i, l
& \@ & & & S &
. o \’Q,’b 0@ leé‘ {\c)’b \\b'b (}*Q o)
N O N Q o X «
& @,g} & (\@ v (\Qo
«® & (:)\o)
Q}\\Q’ O c.)?/
(°
Vulnerability Category

Page = 10
http://www.contextis.com/files/Web_Application_Vulnerability Statistics - June 2013! i

Categories of Vulnerability

Category Description

Server configuration Insecure server configuration settings that result in security
vulnerabilities

Information leakage Information leaked by the application that could be used
by an attacker to help mount an attack

Authentication weaknesses Issues related to the application’s authentication
mechanism that could be exploited by an
unauthenticated attacker to gain or assist in the gaining of
authenticated access

Session management Session management issues that could allow an attacker to

weaknesses hijack or assist in the hijacking of other users’ sessions

Authorisation weaknesses Issues concerning access controls that could allow an
attacker to perform either horizontal or vertical privilege
escalation

Input validation weaknesses Issues created by weaknesses in input validation processes.

Encryption vulnerabilities Issues that concern the confidentiality of data during

transport and in storage

Other Any other issues identified that do not fit into the categories
listed above

Page = 11

http://www.contextis.com/files/Web_Application _Vulnerability Statistics - June 201

Information Leakage

Visible Error Handling

® OO0 mojoLive - We couldn't find it!

.4 » ||+ <.htp://local.mojolive.com/profile/eliw LEXES ¢ Q- Google O |

£rror 500

That's coder-speak for "What does this blinking light mean?”
There's not really much that can be done about this on your end except try a different
page (start with the homepage). Rest assured knowing that this incident has been logged
and we've been notified by our strangely helpful skynet robots!

Unhandled Exception: Exception, Unable to connect to any read database!, FILE:
/Users/eli/Projects/mojo_trunk/framework/database.php, LINE: 100, TRACE: #0
/Users/eli/Projects/mojo_trunk/framework/database.php(24):
Database::getConnection('read’) #1

Page = 12

Wi
http://Local.mojolive. com/proﬂleﬁ’ﬁ,i

Authentication Weakness

Direct URL access to a protected file

® 00 57635927.png 1,191x1,531 pixels "

| < | > | JQ; i£| q Ettp://classiﬁed.example.com/private/ﬁles/downloads/57635927.p;\g > C l \2[

CLASSIFIED INFORMATION NONDISCLOSURE AGREEMENT
AN AGREEMENT BETWEEN AND THE UNITED STATES
(Name of Individual — Printed or typed)

1. Intending to be legally bound, | hereby accept the obligations contained in this Agreement in consideration of my being
granted access to classified information. As used In this Agreement, classified informalion is marked or unmarked classified
information, including oral communications, that is classified under the standards of Executive Order 12958, or under any other
Executive order or statute thal prohibits the unauthorized disclosure of information in the interest of national security; and
unclassified information that meels the standards for classification and |s in the process of a classification determination as
provided in Sections 1.1, 1.2, 1.3 and 1.4(e) of Executive Order 12958, or under any other Executive order or statute that
requires protection for such information in the interest of national security. | understand and accept that by being granted
access o classified information, special confidence and trust shall be placed in me by the Uniled States Government.

2. | hereby acknowledge that | have recelved a security Indoctrination conceming the nature and protection of classified
information, including the procedures to be followed In ascertaining whether other persons to whom | contemplate disclosing
this information have been approved for access fo it, and that | understand these procedures

3. | have been advised that the unauthorized disclosure, unauthorized relention, or negligent handling of classified informa-
tion by me could cause damage or irreparable injury to the United Stales or could be used lo advantage by a foreign nation,
| hereby agree that | will never divulge classified information o anyone unless: (a) | have officially verified that the recipient
has been property authorized by the Uniled States Government to receive It; or (b) | have been given prior written notice of
authorization from the United States Government Department or Agency (hereinafter Department or Agency) responsible for
the classification of information or last granting me a security clearance that such disclosure is permitted. | understand that If
| am uncertain about the classification status of information, | am required to confirm from an authorized official that the
Information is unclassified before | may disclose it, except to a person as provided in (a) or (b), above, | further understand that
| am obligated to comply with laws and regulations that prohibit the unauthorized disclosure of classified information.

Page = 13

Eli White, Web Security and You,p

Authentication Weakness

Ability to URL-hack to access unauthorized data.

® 00 Online - My Accounts "
4> ||| 2] | O https://mybank.com/Accdint/1234-5678-6677-3344) C | Reader || © |

MyBANK MyBANK.com Contact Us | Pr
Payments & Transfers Customer Center

Welcome ELLIOTT WHITE (4) Secure Mes

x@eliw.com | Last logged on at 6:48 PM ET on 06/22/2013

CREDIT CARD (...3344)

Account Summary

Current balance’ $0.00 » See activity
Payment due date 07/07/2013 » See statements
Minimum payment due B $0.00 » Pay credit card
B R R CR en nn

Page = 14

Eli White, Web Security and You,p

Encryption Vulnerabilities

Low Security Hashes

1. Don't just use MD5 (use SHA256, Blowfish,etc...) Even SHA-1 is better
2. Always salt your hashes

Reverse Hash Calculator

Back to Tools | Background | Search Form | Last 20 Hashes

Background

This page doesn't use rainbow tables (yet), but a similar, simpler approach. It uses a database of a couple million pre-compiled hash values. The strings used come from various password
databases, and should have a pretty good chance of "hitting" your value. There is an intentional delay in the response to limit the load on our database.

Please be patient.

Search Form

Enter a md5 or shal hash:

|03c91e2d0e8b5f4ad25c3f254eb37]

e R

Add a plain text word to database (do not enter hash): |

| Submit

Current "Hit Rate": 100 %
Size of database: 20,274,853 words

If our tool doesn't provide a solution, try the free rainbow tables tool at http://www.freerainbowtables.com (opens in new window)

Various Attack Vectors

Page = 16

Attacking Data Stores: SQL Injection

» SQL stands for Structured Query Language.

= SQL is used to communicate with a database.

Page = 17

Attacking Data Stores: SQL Injection

= |t is common to build an SQL Database query based in part on a user
submission.

— User submits a login request, we need to check the database for a matching
account.

= Malicious user know we will be building an SQL query.

— They can attempt to confuse the Database server by putting in special
characters

Page = 18

Attacking Data Stores: SQL Injection

= A user having the ability to send data that is directly interpreted by your

SQL engine.

<?php
$pdo->query("SELECT * FROM users

WHERE name = '{$_POST['name']}' AND pass = '"{$_POST['pass']}'");
?ﬁ

<?php

$_GET['name'] = "' or 1=1; //";
7>

<?php
$pdo->query("SELECT * FROM users
WHERE name = ' or 1=1; //AND pass = '"{$_POST['pass']}'");

7> Alwayshgliues

Attacking Data Stores: SQL Injection

= Sanitize every value received from the user.

— Make sure there is no funny business going on

— Makes any string safe to put in a query

<?php
$query = $pdo->prepare("SELECT * FROM users WHERE name = ? AND pass = ?");

$query->execute(array($_POST["'name'], $_POST['pass']))ﬂ
2>

<?php

$name = $pdo->quote($_POST['name']);

$pass = $pdo->quote($_POST['pass']);

$pdo->query("SELECT * FROM users WHERE name = {$name} AND pass = {$pass}")ﬂ
7>

Page = 20

Attacking Data Stores: SQL Injection

‘2 WebForm1 - Microsoft Internet Explorer
. File Edit View Favorites Tools Help ,’,."’
>»>

& —
Back v &J L’E] ng { g P) Search Favorites

: Address i http: fwww, SQLMAG. comfSQLINnject fWebForm1 . aspx VE a Go

Enter Your User Name and Password

Name: |sadf'OR 1=1--

Password: |The password is ignored in the attack

**JTser Authenticated, Welcome: bill

‘3 Local intranet

Logon page that shows an SQL injection string

West

th
http://sqlmag.com/content/content/43012/figure_01 m;l

Page = 21

Other Injections

» Command Injection: The user being able to inject code into a command
line

* Unchecked File Uploads: The user being allowed to uploadan
executable file.

» Code Injection: User being able to directly inject code.

<?php
$retval = exec('echo “$line” >> logfile.txt');

7>

becomes
<?php
$retval = exec('echo

; rm -rf *; echo ""| >> logfile.txt');

Other Injection

» Command Injection: The user being able to inject code into a command
line

* Unchecked File Uploads: The user being allowed to uploadan
executable file.

» Code Injection: User being able to directly inject code.

-~
(@ Doxygen Links - Mozilla Firefox —. S,
File Edt View History Bookmarks Jools Help
@ c o w : 18-
Doxygen Links
MANY ENTRIES MATCH YOUR QUERY !!!
v S

ioerst
i ’

. -

U
. . . Y
https://security.web.cern.ch/security/recommendations/images/command_injection {iiisg!!

Real World Attacks

= https://www.youtube.com/watch?v=Qb8-0zGIE7A

Page = 24

https://www.youtube.com/watch?v=Qb8-0zGiE7A

Real World Attacks

[exploit@zerB-day codelS ./bxcp http://wmn. bxcp.com ghlst (66
hBnlg:b5aaZ2b48dbeaB988eB89addd46b4chfb68

dasBö (seeZbadc3Y94Y9babYabbebbedb /712818851

ha jo:811febc28526e72589981c923d51821e
Dinniz:aldbfeB898cBav1541d7bbcdZ241853891
kevinek:345d52aee878bBbab3cB84ef179474ef
Xale:318d6751f89¢cbb6b9d79446888998ebb6213
PrivateMike:23c14f311a68486b361f79f3bc962be36
Sspecies8472:336327a911faa7d531118b42424cHBc3g
exxistenz:313edbdddc4458ffc7bdeb32c122d961
DxBluelce:cle2b6c579deBf76d181168a7dc519711

[exploit@zerB-day codelS ./bxcp http://mmu. bxcp.com ghBst 66 > dump.

Page = 25

Attacking Session Management: Session Hijacking

= The HTTP protocol is essentially stateless. It is based on a simple
request-response model.

= Majority of web applications allow you to register and log in. To implement
this functionality, web apps need to use the concept of a session.

» The vulnerabilities that exists in session management mechanisms largely
fall into two categories:

— Weakness in the generation of session tokens

— Weakness in the handling of session tokens throughout their life cycle

Page = 26

Attacking Session Management: Session Hijacking

» One user ‘becoming’ another by taking over their session via
impersonation.

— Avoid “session Fixation”, don’t use URL cookies for your sessions
— Always regenerates Session IDs on a change of access level

— Save an anti-hijack token to another cookie & session. Require it to be present
& match. Salt on unique data (such as User Agent)

- Session ID = ACF3D35F216AAEFC
Session ID = ACF3D35F216AAEFC s
> |5 %
S T N

Victim
Victim
Sniffing a legitim
session

Attacker Attacker

Page = 27

Attacking Session Management: Session Hijacking

A user being able to provide a known session ID to another user.

an o eliw.local/eli.php

| < ‘ Q 7"‘ €9 http://session.example.com/?PHPSESSID=abc123 C (3)

Don’t use cookies for your sessions.

Protect from more complicated fixation attacks, by regenerating
sessions on change of access level.

Use anti-hijack measures to ensure user is legit

Page = 28

Attacking Users: Cross-Site Scripting (XSS)

» The attacks we have considered so far involve directly targeting the sever-
side application.

» Many of these attacks do impinge upon other users, such as SQL
injection. But the attacker’s essential methodology was to interact with
the server in unexpected ways to perform unauthorized actions and
access unauthorized data.

» Cross-site scripting, however, are in a different category.

» The attacker’s primary target: the application’s other users.

Basic idea: A user sending data that is executed as script

Page = 29

Attacking Users: Cross-Site Scripting (XSS)

= XSS vulnerabilities come in various forms and may be divided into three
varieties: reflected, stored, and DOM-based.

» They have important differences in how they can be identified and
exploited.

* [n all cases: Everything from a user is suspect (forms, user-agent,
headers, etc) when fixing, escape to the situation (HTML, JS, XML, etc)
FIEO (Filter Input, Escape Output)

» We will examine each variety of XSS in turn.

Page = 30

Attacking Users: Cross-Site Scripting (XSS)

XSS- Reflected XSS:

Directly echoing back content from the user.

2. Attacker feeds crafted URL to user

6. User’s browser sends session token to attacker

Page = 31

Attacking Users: Cross-Site Scripting (XSS)

XSS- Reflected XSS:

Directly echoing back content from the user.

-

The Security Hole Sengessage from webpage @ t.

<p>Thank you 1{(You hav _l_\ %SS e - please enter you;
The Attack: et
Passwor
Submit 2K
FirSt Name'.—wrrp-r—ureﬂr\—rwv—’—ﬁerrpr—— Smeit

This type of simple XSS bug accounts for approximately 75% of the XSS
vulnerabilities that exists in real-world web apps.

It is called reflected XSS because exploiting the vulnerability involves crafting a
request containing embedded JavaScript that is reflected to

XSS- Reflected XSS:

Directly echoing back content from the user.

http://twitter.com/index.php?%75%73%65%72%3D%3C%73%63%72%69%70%74%3E %61
%6C%65%72%74%28%31%32%33%29%3C%2F %73%63%72%69%70%74%3E

Twitter?

Page = 33

Attacking Users: Cross-Site Scripting (XSS)

XSS- Stored XSS:

You store the data, then later display it.

5. User’s browser sends session token to attacker

Page = 34

Attacking Users: Cross-Site Scripting (XSS)

XSS- Stored XSS:

You store the data, then later display it.

<?php
$query = $pdo->prepare("UPDATE users SET first = ? WHERE id = 42");
$query->executeCarray($_POST['first_name']));

7>
<?php
$result = $pdo->query("SELECT * FROM users WHERE id = 42"); $user = $result-
>fetchObject();
7>

<p>Welcome to <?= $user->first ?>’s Profile</p>

Page = 35 il m

Attacking Users: Cross-Site Scripting (XSS)

XSS- DOM XSS:

Page = 36

What happens in JavaScript, stays in JavaScript.

2. Attacker feeds crafted URL to user

6. User’s browser sends session token to attacker

Attacking Users: Cross-Site Scripting (XSS)

XSS- DOM XSS:
What happens in JavaScript, stays in JavaScript.

1. Auser requests a crafted URL supplied by the attacker and containing
embedded JavaScript
The server’s response does not contain the attacker’s script in any form

When the user’s browser process this response, the script is executed
nonetheless.

W N

Page = 37

XSS- DOM XSS:
What happens in JavaScript, stays in JavaScript.

<script>
$C'#verify').submit(function() {
var first = $(this).find("input[name=first]").val();
$(body) .append("<p>Thanks for the submission: " + first + "</p>");

return false;

Page = 38

XSS is Everywhere

= XSS is by far the most prevalent web app vulnerability

» XSS is often misunderstood because the proof of concept (pop-up)
doesn’t demonstrate true attacker capability

= XSS can lead to reputational damage, denial of service, and chained
exploit.

» XSS can be used against site administrators

Page = 39

Attacking Users: Cross-Site Scripting (XSS)

Real-world Scenario of XSS Attack

Facebook makes use of PHP scripts. The following script became
vulnerable to cross-site scripting some time in July 2010:

www.facebook.com/ads/create/photos/creative uploader.php

This script takes various parameters, one of which (controller_id) was
writing user input directly inside a script tag. Take the following URL as
example:

www.facebook.com/ads/create/photos/creative uploader.php?controller_id=c4c288b438ed080&path=whate
ver&src=whatever&vol=90&w=60&h=80&post upload=1

<script>

onloadRegister(function ()
{window.parent.__UIControllerRegistry["c4c288b438ed080"].saveUploadedImage("whatever",

"whatever", 90, 60, 80);});

Wy
UI ",
https://www.acunetix.com/websitesecurity/xss-face bk i!

http://www.facebook.com/ads/create/photos/creative_uploader.php

Attacking Users: Cross-Site Scripting (XSS)

Real-world Scenario of XSS Attack

By inserting a double quote, an attacker is able to escape the Array’s key string

and insert JavaScript directly within a page on facebook.com.

<script>

onloadRegister(function ()
{window.parent.__UIControllerRegistry["“c4c288b438ed080"].saveUploadedImage("whatever",
"whatever", 90, 60, 80);});

</script>

controller_id=test”]}; alert(“facebook test”); //

<script>

onloadRegister(function (Q{window.parent.__UIControllerRegistry["test"]}; alert("facebook
test"); //"].saveUploadedImage("whatever", "whatever", 90, 60,

) b

</script>

Attacking Users: Cross-Site Scripting (XSS)

Real-world Scenario of XSS Attack

https://www.acunetix.com/websitesecurity/xss-facebook/

E book?

E ! . q |
] . : Y 14

|
- SO . %) Secret message for you
4« Back to Messages Mark as Unread Report Spam Delete
'-.v'l.-r-l ome
”"l F""j Betweer ou and losephine Smith reate a
L/ Messages
Updates Josephine Smith Euro Fi
Deposi

Sent his is the top secret body,

—
31| Events
2] Photos ﬁ - Acuat Tack -— X
" N
&L Friends - !: ‘
s:.~lQi e Earn 4.09
B2 applications Hello there .. this account has been ~ >.vear fi
49| Games compromized with Med
Subject: Secret message for you Terms an
More : July 11 at 4:01pm Josephine Smith: This Licensed
= 3 " S
Attach: 4= is the top secret body, <br [><br Y Like
Friends Online ;>!osepi:me,<5rl>xxxx
% Acuat Tack ® «BacktoMessages 7 Cosmet
se Al Subject: hello >

July 11 at 12:31pm Acu Vi Ctim: test
July 11 at 1:39pm Acuat Tack: hello123 \

Why XSS detection is hard

= Extremely difficult to automate tests for XSS

» Often times XSS defense can be bypassed in clever ways

= Developers should strive to use 3™ party libraries that are collaboratively
maintained

Page = 43

Attacking Users: CSRF (Cross Site Request Forgery)

* [n cross-site request forgery (CSRF) attacks, the attacker creates an
innocuous-looking website that causes the user’s browser to submit a
request directly to the vulnerable application to perform some
unintended action that is beneficial to the attacker.

» Normally, “the same-origin” policy does not prohibit one website from
issuing requests to a different domain.

POST /auth/390/NewUserStep2.ashx HTTP/1.1
Host: quake@day.com
Cookie: SessionId=89BE912093001AB23B907

Content-Type: application/x-www-form-urlencoded
Content-Length: 83

realname=hackersichen&username=hacker&userrole=admin&password=12345&confirmpassword=12345

1. The request performs a privileged action. In the example shown, the request
creates a new user with administrative privileges

2. The application relies solely on HTTP cookies for tracking sessions. No
session-related tokens are transmitted else where within the request

3. The attacker can determine all the parameters required to perform the =
action. Aside from the session token in the cookie, no unpredictable values u’ﬁg""’
need to be included in the request. Uit

Attacking Users: CSRF

(Cross Site Request Forgery)

An attacker can construct a webpage that makes a cross-domain request
to the vulnerable application containing everything needed to perform the

privileged action.

Here is an example of such an attack.

action="https://quakedday. con/NewlserStep2.ashx" method="POST">

type="hidden"
type="hidden"
type="hidden"
type="hidden"
type="hidden"

name="realname" value="hackersichen">
name="username" value="hacker">
name="userrole" value="admin">
name="password" value="12345">
name="confirmpassword" value="12345">

type="text/javascript">
document.forms [@] .submit();

This form will be automatically submitted. When the user’s browser
submits the form, it automatically adds the user’s cookies for the

target domain. If an admin user who is logged in the vulnerable app
visits this web page, the requests is processed within the

Page = 45 .. , i
administrator’s session.

Unboestity
Wi

Oluhi:
lit+!!

Attacking Users: CSRF (Cross Site Request Forgery)

= Cross site request forgery is a trust exploit

» The server trusts (wrongly) the browser request of users b/c
authentication cookies are supplied

= Attacker forces the users browser to take action on their behalf

= Clever way to take over web applications

Page = 46

Brute Force Attacks (Password)

— ovation

LaStPassm FEATURES ~ HOWITWORKS GO PREMIUM ENTERPRISE SIGNIN

Access Your Vault

Email quakeOday@gmail.com

Password
Click here if you forgot your password

Remember my Email m

= CAPTCHA mm o=

Note: You need cookies enabled to log in.

= |P rate ||m|t|ng [6] failed logins will get your IP banned!
You have 6 remaining tries.
reCAPTCHA Username: %
PassSWOrd: | eececccccccccccccccccccccccscces %
Do it!
| Don't have an account? Turn to your friend in TTG to get an invite!
5 47 }aOfaisg Q‘ZOH' If you have problems loging in, try cleaning cookies and restarting your browser.
- S Forget your password? Recover your password via email.

®e

U &A

Page = 48

