
CSC 472/583 Topics of Software Security
PLT, GOT & Return-to-plt Attack

Dr. Si Chen (schen@wcupa.edu)

Class10



Page § 2

Review



Page § 3

Glossary of Terms

§ Binary: A binary is the output file from compiling a C or C++ file. Anything in the binary has 
a constant address.

§ Stack: The stack is part of the memory for a binary. Local variables and pointers are often 
stored here. The stack can be randomized.

§ NX (Non-Executable): Security measure in modern OSes to separate processor 
instructions (code) and data (everything that's not code.) This prevents memory from being 
both executable and writable.

§ ROP (Return Oriented Programming): Reusing tiny bits of code throughout the binary to 
construct commands we want to execute.

§ libc: A binary is dynamically linked and has a libc file. This means that the whole 
set of standard library functions are located somewhere in the memory used by 
the program.

§ ASLR (Address Space Layout Randomization): Security measure in modern 
OSes to randomize stack and libc addresses on each program execution.

§ Canary: A canary is some (usually random) value that is used to verify that nothing has 
been overrwritten. Programs may place canaries in memory, and check that they still have 
the exact same value after running potentially dangerous code, verifying the integrity of that 
memory.



Page § 4

Return-oriented programming 
(ROP)



Page § 5

ROP: The Main Idea



Page § 6

ret2libc Attack



Page § 7

Introduction

“Getting around non-executable stack (and fix)”, Solar Designer 
(BUGTRAQ, August 1997) 

https://seclists.org/bugtraq/1997/Aug/63

The ret2libc and return oriented programming (ROP) 
technique relies on overwriting the stack to create a new 
stack frame that calls the system function.



Page § 8

ret2libc Attack

§ We were able to pick from a wealth of ROP gadgets to construct the ROP 
chain in the previous section because the binary was huge. 

§ Now, what happens if the binary we have to attack is not large enough 
to provide us the gadgets we need?

§ One possible solution, since ASLR is disabled, would be to search for our 
gadgets in the shared libraries loaded by the program such as libc.

§ However, if we had these addresses into libc, we could simplify our 
exploit to reuse useful functions. One such useful function could be 
the system() function.



Page § 9

libc

§ C standard library 
§ Provides functionality for string handling, mathematical computations, 

input/output processing, memory management, and several other 
operating system services
– <stdio.h>
– <stdlib.h>
– <string.h>

However, if we had these addresses into libc, we could 
simplify our exploit to reuse useful functions. One such 
useful function could be the system() function. 
à find System() function’s address



Page § 10

Ret2lib Shellcode Structure

Dummy Characters
Address for System() in libc
Address for Exit() function in libc (if you want to exit the program gracefully)
Address for Command String (“e.g. /bin/sh”)

Function Address

Return Address (Old EIP)

Arguments



Page § 11

Shutdown ASLR

Shutdown ASLR (Address space layout randomization)



Page § 12

Address Space Layout Randomization (ASLR)

• Address Space Layout Randomization (ASLR) is a technology used 
to help prevent shellcode from being successful. 

• It does this by randomly offsetting the location of modules and 
certain in-memory structures.



Page § 13

PLT, GOT & Return-to-plt Attack



Page § 14

Bypassing ASLR/NX with Ret2PLT



Page § 15

How to bypass ASLR/NX?

When ASLR has been enabled, we no longer can be sure where the libc will 
be mapped at. 

However, that begs the question: how does the binary know 
where the address of anything is now that they are 
randomized? 

The answer lies in something called the Global Offset Table (GOT) and the 
Procedure Linkage Table (PLT).



Page § 16

Call Function(s) in libc



Page § 17

Call Function(s) in libc



Page § 18

ASM CALL

Call’s in ASM are ALWAYS to absolute address

How does it work with dynamic addresses for shared libraries?

Solution: 
• A “helper” at static location
• In Linux: the Global Offset Table (GOT) and the 

Procedure Linkage Table (PLT).(they work together in 
tandem)



Page § 19

Global Offset Table

• To handle functions from dynamically loaded objects, the compiler 
assigns a space to store a list of pointers in the binary. 

• Each slot of the pointers to be filled in is called a 'relocation' entry. 
• This region of memory is marked readable to allow for the values for the 

entries to change during runtime.

ret2plt.c gcc ret2plt.c -m32 -o ret2plt -no-pie -fno-stack-protector

We can take a look at the '.got' segment of the binary 
with readelf.



Page § 20

Global Offset Table

Let's take the read entry in the GOT as an example. If we hop onto gdb, 
and open the binary in the debugger without running it, we can examine 
what is in the GOT initially.

0x08048346: An address within the Procedure Linkage Table (PLT)



Page § 21

Global Offset Table

If we run it and break just before the program ends, we can see 
that the value in the GOT is completely different and now points 
somewhere in libc.



Page § 22

Procedure Linkage Table (PLT)

When you use a libc function in your code, the compiler does not 
directly call that function but calls a PLT stub instead. 

Let's take a look at the disassembly of the read function in PLT.

Here's what's going on here when the function is run for the first time:
1.The read@plt function is called.
2.Execution reaches jmp DWORD PTR ds:0x804a00c and the memory address 0x804a00c is 
dereferenced and is jumped to. If that value looks familiar, it is. It was the address of the GOT 
entry of read.
3.Since the GOT contained the value 0x08048346 initially, execution jumps to the next 
instruction of the read@plt function because that's where it points to.
4.The dynamic loader is called which overwrites the GOT with the resolved address.
5.Execution continues at the resolved address.



Page § 23

Procedure Linkage Table (PLT)



Page § 24

Procedure Linkage Table (PLT)

How does it work?

• “call system” is actually call system@plt
• The PLT resolves system@libc at runtime
• The PLT stores system@libc in system@got



Page § 25

Call System() Function in libc with PLT, GOT



Page § 26

Call System() Function in libc with PLT, GOT



Page § 27

Call System() Function in libc with PLT, GOT



Page § 28

Lazy Binding

1st time call System()

After the 1st System() call system@libc



Page § 29

Bypass ASLR/NX with Ret2plt Attack

Enable ASLR (Address space layout randomization)

ret2plt.c



Page § 30

Bypass ASLR/NX with Ret2plt Attack

ret2plt.c

PIE Position independent executable

http://www.wikipedia.org/wiki/Position_independent_code


Page § 31

Check PLT stub Address

0x08048370
For system@plt



Page § 32

Find Useable String as Parameter for System() function

The sheep are blue, 
but you see red



Page § 33

Pwn Script



Page § 34


