
CSC 472/583 Topics of Software Security
Stack Overflow (2)

Dr. Si Chen (schen@wcupa.edu)

Class7



Page § 2

Review



Page § 3

Stack Frame



Page § 4

Overflow.c



Page § 5

Buffer Overflow

§ Common Unsafe C Functions



Page § 6

PEDA – Python Exploit Development Assistance for GDB

0x08048456 --> \x56\x84\x04\08
Convert to little endian format (check slides ch02.pptx):



Page § 7

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

New Return Address – Hacked()



Page § 8

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

\x56\x84\x04\08



Page § 9

Protection: ASLR, DEP, Stack Protector, PIE

-fno-stack-protector Shutdown stack protector
-z execstack Shutdown DEP (Data Execution Prevention)
-no-pie Shutdown Position-independent executable

Shutdown ASLR (Address space layout randomization)

Shutdown Protections



Page § 10

Guessing Addresses

§ Typically you need the source code so you can estimate the address of 
both the buffer and the return-address.

§ An estimate is often good enough! (more on this in a bit).



Page § 11

Figure out the Length of Dummy Characters with PEDA

§ pattern -- Generate, search, or write a cyclic pattern to memory
§ What it does is generate a De Brujin Sequence of a specified length. 
§ A De Brujin Sequence is a sequence that has unique n-length 

subsequences at any of its points. In our case, we are interested in 
unique 4 length subsequences since we will be dealing with 32 bit 
registers. 

§ This is especially useful for finding offsets at which data gets written into 
registers.

https://en.wikipedia.org/wiki/De_Bruijn_sequence


Page § 12

Figure out the Length of Dummy Characters with PEDA



Page § 13

Use Pwntools to write Python Exploit Script



Page § 14

Shellcode
Shellcode is defined as a set of instructions injected and then executed by an 
exploited program. Shellcode is used to directly manipulate registers and the 
functionality of a exploited program.



Page § 15

Crafting Shellcode (the small program)

Example: Hello World

hello.asm



Page § 16

Crafting Shellcode (the small program)

Example: Hello (hello.asm)

To compile it use nasm:

Use objdump to get the shellcode bytes:



Page § 17

Crafting Shellcode (the small program)

Extracting the bytes gives us the shellcode:

\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\x
b2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f



Page § 18

Test Shellcode (test.c)



Page § 19

Shellcode

§ Taking some shellcode from Aleph One's 'Smashing the Stack for 
Fun and Profit'

shellcode = 
("\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" + 
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" + 
"\x80\xe8\xdc\xff\xff\xff/bin/sh")



Page § 20

Finding a possible place to inject shellcode

Small Program

New Return Address

"\xeb\x1f\x5e\x89\x76\x08\x31\xc
0\x88\x46\x07\x89\x46\x0c\xb0\x
0b\x89\xf3\x8d\x4e\x08\x8d\x56\x
0c\xcd\x80\x31\xdb\x89\xd8\x40\
xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"



Page § 21

Finding a possible place to inject shellcode

Small Program

New Return Address

"\xeb\x1f\x5e\x89\x76\x08\x31\xc
0\x88\x46\x07\x89\x46\x0c\xb0\x
0b\x89\xf3\x8d\x4e\x08\x8d\x56\x
0c\xcd\x80\x31\xdb\x89\xd8\x40\
xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"

Use GDB to figure out
the memory address of
the beginning of the
buffer



Page § 22

NOP slide



Page § 23

NOP slide

§ Most CPUs have a No-Operation instruction – it does nothing but advance 
the instruction pointer.

§ Usually we can put a bunch of these ahead of our program (in the string).
§ As long as the new return-address points to a NOP we are OK.

Using NOPs



Page § 24

NOP slide

Small Program

New Return Address

"\xeb\x1f\x5e\x89\x76\x08\x31\xc
0\x88\x46\x07\x89\x46\x0c\xb0\x
0b\x89\xf3\x8d\x4e\x08\x8d\x56\x
0c\xcd\x80\x31\xdb\x89\xd8\x40\
xcd\x80\xe8\xdc\xff\xff\xff/bin/sh"

\x90\x90\x90\x90\x90\x9
0\x90\x90\x90\x90\x90\x
90\x90\x90\x90\x90\x90



Page § 25

Estimating the stack size

§ We can also guess at the location of the return address relative to the 
overflowed buffer.

§ Put in a bunch of new return addresses!



Page § 26

Estimating the Location 

Small Program

New Return Address

"\xeb\x1f\x5e\x89\x76\x08\x3
1\xc0\x88\x46\x07\x89\x46\x0
c\xb0\x0b\x89\xf3\x8d\x4e\x0
8\x8d\x56\x0c\xcd\x80\x31\xd
b\x89\xd8\x40\xcd\x80\xe8\xd
c\xff\xff\xff/bin/sh"

\x90\x90\x90\x90\x90\x9
0\x90\x90\x90\x90\x90\x
90\x90\x90\x90\x90\x90

New Return Address
New Return Address



Page § 27

Example: Overflow2.c



Page § 28

Find Return Address

0xffffd54e



Page § 29

Bug à Vulnerability

§Step 1. Fine the vulnerability
– Read & read & read the code (code audit)
– Fuzz testing

• Crash
• Output some info that shouldn’t been output



Page § 30

Bug à Vulnerability

§Step 2. Control-flow Hijack
– Try to change the flow of the program

• Change the return address
• Change the function pointer, so the behavior of the will change when

called
• Change the variable, change the behavior of the function (e.g. uid =

0)



Page § 31

Bug à Vulnerability

§Step 3. Execute Payload
– Launch the attack

• Open a shell
• Read/write file/data
• Implement backdoor…



Page § 32

ELF executable



Page § 33

ELF executable for Linux

Executable and Linkable Format (ELF)

Linux Windows
ELF file .exe (PE)
.so (Shared object file) .dll (Dynamic Linking

Library)
.a .lib (static linking library)
.o (intermediate file between
complication and linking,
object file)

.obj



Page § 34

ELF executable for Linux

• ELF32-bit LSB
• Dynamically linked



Page § 35

Shared library

• ELF is loaded by ld-linux.so.2 à in charge of memory mapping,
load shared library etc..

• You can call functions in libc.so.6



Page § 36


