
CSC 472/583 Topics of Software Security
Stack Overflow (1)

Dr. Si Chen (schen@wcupa.edu)

Class6



Page § 2

“Memory Corruption”

§ What is it?



Page § 3

“Memory Corruption”

§Modifying a binary’s memory in a way that was not intended 

§Broad umbrella term for most of what the rest of this class will 
be 

§The vast majority of system-level exploits (real-world and 
competition) involve memory corruption



Page § 4

Buffers

§ A buffer is defined as a limited, contiguously allocated set of memory. The 
most common buffer in C is an array. 



Page § 5

A novice C programmer mistake 

This example shows how easy it is to read past the end 
of a buffer; C provides no built-in protection. 



Page § 6

Another C programmer mistake 



Page § 7

Crash report



Page § 8



Page § 9

Stack Frame



Page § 10

Overflow.c



Page § 11

Protection: ASLR, DEP, Stack Protector

Shutdown protectionShutdown protection

-fno-stack-protector Shutdown stack protector
-z execstack Shutdown DEP(Data Execution Prevention)

Shutdown ASLR (Address space layout randomization)



Page § 12

Overflow.c



Page § 13

Return Hijack

§ The return address will be stored on stack when calling a new function.
(EIP)

§ The local valuable will be store on the low address
§ If the variable is an array, and if we store too many data, it will cover the

return address which store on the high address.



Page § 14

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

New Return Address



Page § 15

Print ABCD



Page § 16

Print 100A(s)



Page § 17

BASH refresher



Page § 18

gdb io



Page § 19

Guessing Addresses

§ Typically you need the source code so you can estimate the address of 
both the buffer and the return-address.

§ An estimate is often good enough! (more on this in a bit).



Page § 20

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

New Return Address – Hacked()



Page § 21

From Crash to Hack

§ If the input is larger than the size of the array, normally, the program will
crash.

§ Need to craft special data to exploit this vulnerability.
– The general idea is to overflow a buffer so that it overwrites the return address.

AAAA
AAAA
BBBB
BBBB
CCCC
CCCC
DDDD

\x4d\x55\x55\x56



Page § 22

Figure out the Length of Dummy Characters

§ pattern -- Generate, search, or write a cyclic pattern to memory
§ What it does is generate a De Brujin Sequence of a specified length. 
§ A De Brujin Sequence is a sequence that has unique n-length 

subsequences at any of its points. In our case, we are interested in 
unique 4 length subsequences since we will be dealing with 32 bit 
registers. 

§ This is especially useful for finding offsets at which data gets written into 
registers.

https://en.wikipedia.org/wiki/De_Bruijn_sequence


Page § 23

Figure out the Length of Dummy Characters with PEDA



Page § 24

Jump to Shellcode

§ When the function is done it will jump to whatever address is on the stack.
§ We put some code in the buffer and set the return address to point to 

it!

Small Program

New Return Address



Page § 25

Crafting Shellcode (the small program)

Extracting the bytes gives us the shellcode:

\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\x
b2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f



Page § 26

Finding a possible place to inject shellcode

Small Program

New Return Address

\xeb\x19\x31\xc0\x31\xdb\x31\xd
2\x31\xc9\xb0\x04\xb3\x01\x59\x
b2\x05\xcd\x80\x31\xc0\xb0\x01\
x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f

Use GDB to figure out
the memory address of
the beginning of the
buffer



Page § 27

Find Return Address



Page § 28

Find Return Address

0xffffd4fe



Page § 29

NOP slide



Page § 30

NOP slide

Small Program

New Return Address

\xeb\x19\x31\xc0\x31\xdb\x31\xd
2\x31\xc9\xb0\x04\xb3\x01\x59\x
b2\x05\xcd\x80\x31\xc0\xb0\x01\
x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f

\x90\x90\x90\x90\x90\x9
0\x90\x90\x90\x90\x90\x
90\x90\x90\x90\x90\x90



Page § 31

Update Python Script



Page § 32

Run Exploit Script and attach GDB-PEDA to Program PID



Page § 33

Classic Exploitation Illustration



Page § 34

Classic Exploitation Illustration



Page § 35

Classic Exploitation Illustration



Page § 36

Classic Exploitation Illustration



Page § 37

Classic Exploitation Illustration



Page § 38

Classic Exploitation Technique

1. Call hacked() (lab1)
2. Write our own shellcode to launch shell (lab2)



Page § 39

Compile the code

gcc -m32 –fno-stack-protector –zexecstack –o ./overflow2 ./overflow2.c



Page § 40

No eXecute (NX)

§ -zexecstack
§ Also known as Data Execution Prevention (DEP), this protection marks 

writable regions of memory as non-executable. 
§ This prevents the processor from executing in these marked regions of 

memory.



Page § 41

No eXecute (NX)

After the function returns, the program will set the instruction pointer 
to 0xbfff0000 and attempt to execute the instructions at that address. 
However, since the region of memory mapped at that address has no 
execution permissions, the program will crash.



Page § 42

No eXecute (NX)

Thus, the attacker's exploit is thwarted.



Page § 43

Compile the code

gcc -m32 –fno-stack-protector –zexecstack –o ./overflow2 ./overflow2.c



Page § 44


