
CSC 472/583 Software Security
System Call, Shellcode

Dr. Si Chen (schen@wcupa.edu)

Class5

Page § 2

System Call

Page § 3

System Call

§ A system call, sometimes referred to as a kernel call, is a request in
a Unix-like operating system made via a software interrupt by an active
process for a service performed by the kernel.

Page § 4

System Call

§ User code can be arbitrary
§ User code cannot modify kernel memory
§ The call mechanism switches code to kernel mode

Page § 5

What is System Call?

§ System resources (file, network, IO, device) may be accessed by multiple
applications at the same time, can cause confliction.

§ Modern OS protect these resources.

§ E.g. How to let a program to wait for a while?

100Mhz CPU -> 1s
1000Mhz CPU -> 0.1s

Use OS provide Timer

Page § 6

What System Call?

§ Let an application to access system resources.
§ OS provide an interface (System call) for the application
§ It usually use the technique called “interrupt vector”

– Linux use 0x80

– Windows use 0x2E

In system programming, an interrupt is a signal to the processor emitted by
hardware or software indicating an event that needs immediate attention. An
interrupt alerts the processor to a high-priority condition requiring the interruption
of the current code the processor is executing. The processor responds by
suspending its current activities, saving its state, and executing a function called
an interrupt handler (or an interrupt service routine, ISR) to deal with the event.
This interruption is temporary, and, after the interrupt handler finishes, the
processor resumes normal activities.[1] There are two types of interrupts:
hardware interrupts and software interrupts. – From Wikipedia

https://en.wikipedia.org/wiki/System_programming
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Function_(programming)
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Interrupt

Page § 7

CPU Interrupt

User Mode Execution Interruption occurred

Interrupt Vector Table Interrupt Handler

Next instruction

User Mode

Kernel Mode

Page § 9

fwrite() path in both Linux and Windows

fwrite()

write()

interrupt 0x80

sys_write()
Kernel

fwrite()

write()

NtWriteFile()

Interrupt 0x2e

IoWriteFile()
Kernel

Application

C
Run
Time
Library

API (Windows)

Kernel

./program program.exe

Libcmt.lib
msvcr90.dll

Kernel32.dll

NTDLL.dll

NtosKrnl.exe

libc.a
libc.so
libc.a
libc.so

./vlinuxz

Page § 10

Linux System Call

http://syscalls.kernelgrok.com

http://syscalls.kernelgrok.com/

Page § 11

Page § 12

Trace by strace (linux)
§ strace /bin/echo AAAAA

Page § 13

Example: Hello World

helloworld.asm

Quick review:
•DB - Define Byte. 8 bits
•DW - Define Word. Generally 2 bytes on a
typical x86 32-bit system
•DD - Define double word. Generally 4 bytes on
a typical x86 32-bit system

From x86 assembly tutorial,

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Page § 14

Some Useful System Call

§ open/read/write

§ mmap/mprotect
– mmap:use to allocate an executable area
– mprotect: disable data executable prevention

§ execve
– execve(char* path, char* argv[], char* envp[]);
– path: path to the executable file

– argv: arguments (char* pointer array)
– envp: environment variable (char* pointer array)

Page § 15

Syscall Summary

§Linux Syscall sorta use fastcall
– specific syscall # is loaded into eax

– arguments for call are placed in different registers
– int 0x80 executes call to syscall()
– CPU switches to kernel mode

– each syscall has a unique, static number

Page § 16

Shellcode
Shellcode is defined as a set of instructions injected and then executed by an
exploited program. Shellcode is used to directly manipulate registers and the
functionality of a exploited program.

Page § 17

Crafting Shellcode (the small program)

Example: Hello World

hello.asm

Page § 18

Crafting Shellcode (the small program)

Example: Hello (hello.asm)

To compile it use nasm:

Use objdump to get the shellcode bytes:

Page § 19

Crafting Shellcode (the small program)

Extracting the bytes gives us the shellcode:

\xeb\x19\x31\xc0\x31\xdb\x31\xd2\x31\xc9\xb0\x04\xb3\x01\x59\x
b2\x05\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80\xe8\xe2\xff\xff\xf
f\x68\x65\x6c\x6c\x6f

Page § 20

Test Shellcode (test.c)

Page § 21

Shellcode

§ Taking some shellcode from Aleph One's 'Smashing the Stack for
Fun and Profit'

shellcode =
("\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" +
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" +
"\x80\xe8\xdc\xff\xff\xff/bin/sh")

Page § 22

