
CSC 472/583 Topics of Software Security
Introduction

Dr. Si Chen (schen@wcupa.edu)

Class1

Page § 2

What is computer security?

•

•

Most developers and operators are concerned with
correctness: achieving desired behavior

A working banking web site, word processor, blog, …

•

•

Security is concerned with preventing undesired
behavior

Considers an enemy/opponent/hacker/adversary who
is actively and maliciously trying to circumvent any
protective measures you put in place

Page § 3

Security Expectations

§Confidentiality: requires that information be kept private

§ Integrity: the trustworthiness and correctness of data.
§Availability: the capability to use information and resources.

Page § 4

Kinds of undesired behavior

•
•

•

Corporate secrets (product plans, source code, …)
Personal information (credit card numbers, SSNs, …)

•
•

•

Installing unwanted software (spyware, botnet client, …)
Destroying records (accounts, logs, plans, …)

•
•

•

Unable to purchase products
Unable to access banking information

Stealing information:confidentiality

Modifying information or functionality:integrity

Denying access:availability

Page § 5

Significant security breaches

•
•

RSA, March 2011
stole tokens that permitted subsequent compromise of
customers using RSA SecureID devices

•
•

Adobe, October 2013
stole source code, 130 million customer records
(including passwords)

•
•

Target, November 2013
stole around 40 million credit and debit cards

• … and many others!

Page § 6

Vulnerabilities

Vulnerabilities: specific flaws or oversights in a piece of software
that allow attackers to do somethings malicious

Software vulnerabilities can be thought of as a subset of the larger
phenomenon software bugs

Many breaches begin by exploiting a vulnerability --
This is a security-relevant software defect that can be exploited to
effect an undesired behavior

“A complex program, written by a team of experts and
deployed around the world for more than a decade, can
suddenly be co-opted by attackers for their own means. The
whole process as some form of digital voodoo”

Page § 7

Example: RSA 2011 breach

• Exploited an Adobe Flash player vulnerability

1. A carefully crafted Flash program, when run by the vulnerable Flash player, allows the
attacker to execute arbitrary code on the running machine

2. This program could be embedded in an Excel spreadsheet, and run
automatically when the spreadsheet is opened

3. The spreadsheet could be attached to an e-mail masquerading to be from a
trusted party (spear phishing)

Page § 8

Considering Correctness
•
•

The Flash vulnerability is an implementation bug
All software is buggy. So what?

•

•

A normal user never sees most bugs, or works
around them

Most (post-deployment) bugs due to rare feature
interactions or failure to handle edge cases

•

•

Assessment: Would be too expensive to fix every
bug before deploying

So companies only fix the ones most likely to affect
normal users

Page § 9

Key difference:

An adversary is not a normal user!

§ The adversary will actively attempt to find defects in rare feature
interactions and edge cases
§ For a typical user, (accidentally) finding a bug will result in a crash, which he

will now try to avoid

§ An adversary will work to find a bug and exploit it to achieve his goals

Considering Security

Page § 10

To ensure security, we must

eliminate bugs and design
flaws, and/or

make them harder to exploit

Page § 11

What is Software Security?

Page § 12

Software Security

§ Software security focuses on the secure design and implementation of
software

§ Focus of study:
– the (source) code

§ By contrast: Many popular approaches to security treat software as a
black box (ignoring the code)
– OS security, anti-virus, firewalls, etc.

Page § 13

Course overview

• This course is primarily aimed at student interested in
secure software development, who will
•

•

•

•

Design software systems that should be secure
Write code that should be secure
Review code that should be secure
Test code that should be secure

• We will connect to other classes in the WCU
CSC 301…

• Much of our focus will be on the software, and how
to develop it to be secure

Page § 14

Expected background

• Roughly: knowledge of a junior-level undergraduate
majoring in computer science

• Knowledge with the following
• Programming in general (e.g. Java)

• Familiarity with the following:
•

•

•

Unix/Linux including the command-line shell and gdb
The web (HTML, HTTP, TCP, network communications)
Intel x86 assembly language and architecture

Page § 15

Learning Software Security

•

•

•

•

Our goal is learn how to make
more secure software

Better design
Better implementation
Better assurance

How should we go about this?

Page § 16

Black Hat, White Hat

•

•

What are the security-relevant defects
that constitute vulnerabilities?
How are they exploited?

During the course we will wear both hats

White hat
•

•

How do we prevent security-relevant
defects (before deploying)?
How do we make vulnerabilities we don’t
manage to avoid harder to exploit?

Black hat

Page § 17

Low-level Vulnerabilities

• Programs written in C and C++ are susceptible a
variety of dangerous vulnerabilities
•

-

-

-

-

•

•

Buffer overflows
On the stack
On the heap
Due to integer overflow
Over-writing and over-reading

Format string mismatches
Dangling pointer dereferences

Attacks
- Stack smashing
- Format string attack
- Stale memory access
- Return-oriented

Programming (ROP)

•
•

All violations of memory safety
Accesses to memory via pointers that don’t own that
memory

Page § 18

Ensuring Memory Safety

• The easiest way to avoid these vulnerabilities is to
use a memory-safe programming language
• Better still: a type-safe language

• For C/C++, use automated defenses
•

•

•

•

•

Stack canaries
Non-executable data (aka W+X or DEP)
Address space layout randomization (ASLR)
Memory-safety enforcement (e.g., SoftBound)
Control-flow Integrity (CFI)

• and safe programming patterns and libraries
• Key idea: validate untrusted input

Page § 19

Web Security

§ There are new vulnerabilities and attacks
– SQL injection

– Cross-site scripting (XSS)

– Cross-site request forgery (CSRF) Session hijacking

§The defenses have a similar theme:

– Careful who/what you trust: Validate input

– Reduce the possible damage, make exploitation harder

Page § 20

Requirements and Design

•

•

Identify sensitive data and resources and define
security requirements for them, like confidentiality,
integrity, and availability

Consider expected threats and abuse cases that
could violate these requirements

•
•

•

Apply principles for secure software design
To prevent, mitigate, and detect possible attacks
Main categories: Favor Simplicity, Trust with
Reluctance, and Defend in Depth.

Page § 21

Rules and Tools

•
•

Apply coding rules to implement secure design
With similar goals of preventing, mitigating, or
detecting possible attacks

•

•

Apply automated code review techniques to find
potential vulnerabilities in components

Static analysis, and symbolic execution (which
underlies whitebox fuzz testing)

•

•

Apply penetration testing to find potential flaws in
the real system, in a deployment environment

Fuzz testing, perhaps employing attack patterns

Page § 22

Example

Page § 23

Heartbleed

CVE-2014-0160

Page § 24

Heartbleed

Description
The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1
before 1.0.1g do not properly handle Heartbeat Extension
packets, which allows remote attackers to obtain sensitive
information from process memory via crafted packets that
trigger a buffer over-read, as demonstrated by reading private
keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

Page § 25

How The Heartbleed bug works

http://imgs.xkcd.com/comics/heartbleed_explanation.png

Page § 26

How The Heartbleed bug works

http://imgs.xkcd.com/comics/heartbleed_explanation.png

Page § 27

How The Heartbleed bug works

http://imgs.xkcd.com/comics/heartbleed_explanation.png

Page § 28

Heartbleed and OpenSSL

§ OpenSSL is an open-source cryptography library, widely used to
implement the Internet’s Transport Layer Security (TLS) protocol.

https://scienceofbusiness.files.wordpress.com/2014/04/heartbleed-openssl-bug.jpg

Page § 29

SSL v3 Record
Length (4 bytes)

HeartBeat Message Type
(1 byte)

HeartBeat Message
Length (2 bytes)

Message Data (variable
bytes)

No boundary check.
The attacker controls both of these length fields!

SSL v3 Record
Length = 65535

HeartBeat Message Type
HB_RESPONSE

HeartBeat Message
Length = 65535

Message Data
1 random byte

Page § 30

Exploit Shellcode

Page § 31

Heartbleed Attack

Page § 32

0day

§ A 0day vulnerability is an undisclosed computer-software vulnerability that
hackers can exploit to adversely affect computer programs, data,
additional computers or a network.

§ It is known as a ”0day" because it is not publicly reported or announced
before becoming active, leaving the software's author with zero days in
which to create patches or advise workarounds to mitigate its actions.

https://www.exploit-db.com/

Page § 33

PoC and Exploit

§ PoC (Proof of Concept): An attack against a computer or network that
is performed only to prove that it can be done. It generally does not
cause any harm, but shows how a hacker can take advantage of a
vulnerability in the software or possibly the hardware.

§ Exploit: An unethical or illegal attack that takes advantage of some
vulnerability.

Page § 34

Code Analysis Tools: IDA Pro

IDA Starter Licenses: $739
IDA Professional Licenses $1409

Page § 35

Code Analysis Tools: OllyDbg

OllyDbg is a 32-bit assembler level analyzing debugger
Microsoft® Windows®. OllyDbg is a shareware, but you can download and
use it for free.

Page § 36

Code Analysis Tools: Immunity Debugger

Immunity Debugger is a powerful new way to write exploits, analyze
malware, and reverse engineer binary files.

It has a large and well supported Python API for easy extensibility.

Page § 37

Code Analysis Tools: WinDbg

The Windows Debugger (WinDbg) can be used to
debug kernel and user mode code, analyze crash
dumps and to examine the CPU registers as code
executes.

Page § 38

Code Analysis Tools: GDB

GDB, the GNU Project debugger, allows you to see what is going
on `inside' another program while it executes -- or what another
program was doing at the moment it crashed.

Page § 39

Code Analysis Tools: JEB

The Android debuggers

Page § 40

Static analysis and Dynamic analysis

§ Static analysis is a method of computer program debugging that is done
by examining the code without executing the program.

§ Dynamic analysis is the testing and evaluation of a program by
executing data in real-time.

Page § 41

