
CSC 495/583 Topics of Software Security
Multi-Stage Exploits,

StackGuard & Format String Bug
Dr. Si Chen (schen@wcupa.edu)

Class9

Page § 2

Review

Page § 3

Call puts() Function in libc with PLT, GOT

puts@plt

puts@got

puts@libc

Page § 4

Information Leak

printf(%s, puts@got);

0x0804a018 puts@libcputs@got:

leak puts@libc’s address

Page § 5

Information Leak

printf(%s, puts@got);

0x0804a018 puts@libc
puts@got:

leak puts@libc’s address

0xf7d24000 libc base
0xf7d60d10 system()

dup2()
read()
write()

0xf7d8b360 puts()

libc

Page § 6

Information Leak

printf(%s, puts@got);

0x0804a018 0xf7d8b360
puts@got:

leak puts@libc’s address

0xf7d24000 libc base
0xf7d60d10 system()

dup2()
read()
write()

0xf7d8b360 puts()

libc

Page § 7

Information Leak

printf(%s, puts@got);

0x0804a018 0xf7d8b360
puts@got:

leak puts@libc’s address

0xf7d24000 libc base
0xf7d60d10 system()

dup2()
read()
write()

0xf7d8b360 puts()

libc

offset_puts
0x00067360

libc base = puts@libc - offset_puts

Page § 8

Information Leak

printf(%s, puts@got);

0x0804a018 0xf7d8b360
puts@got:

leak puts@libc’s address

0xf7d24000 libc base
0xf7d60d10 system()

dup2()
read()
write()

0xf7d8b360 puts()

libc

offset_system
0x0003cd10

system_addr = libc base + offset_system

we can calculate
system@libc

Page § 9

GOT Overwrite Attack

0x0804a018 0xf7d8b360
puts@got:

0xf7d24000 libc base
0xf7d60d10 system()

dup2()
read()
write()

0xf7d8b360 puts()

libc

Replace
puts@libc

with
system@libc

0xf7d60d10

puts(”/bin/bash”);

system(”/bin/bash”);

Page § 10

Multi-Stage Exploits

(Information Leakage, GOT Overwrite, ROP)

Page § 11

multi_stage.c

ASLR/NX are enabled

The only things we can work with is read, write, and the gadgets that are
present in the tiny binary.

Page § 12

multi_stage.c

Page § 13

multi_stage.c

Page § 14

multi_stage.c: trigger buffer overflow and control EIP

buffer size à 16 byte
read(0, buffer, 100) à 100 > 16 à Buffer overflow attack

Page § 15

multi_stage.c: trigger buffer overflow and control EIP

buffer size à 16 byte
read(0, buffer, 100) à 100 >
16 à Buffer overflow attack

Page § 16

multi_stage.c: leak the libc base address

write(STDOUT, write@got, 4)

write(1, write@got, 4)

4 byte = 32 bit

Page § 17

multi_stage.c: leak the libc base address

write(1, write@got, 4)

0x0804a014 0xf7e446f0
write@got:

leak write@libc’s address

0xf7d24000 libc base
0xf7d60d10 system()

dup2()
read()

0xf7e446f0 write()
0xf7d8b360 puts()

libc

Page § 18

multi_stage.c: leak the libc base address

write(1, write@got, 4) leak write@libc’s address

dummy “A” * 28
write@plt

0xdeadbeef
1

write@got
4

shellcode structure

call write()
next func()
argument 1
argument 2
argument 3

Page § 19

multi_stage.c: leak the libc base address

dummy “A” * 28
write@plt

0xdeadbeef
1

write@got
4

objdump –d multi_stage

write@plt à 0x08048320

Page § 20

multi_stage.c: leak the libc base address

dummy “A” * 28
write@plt

0xdeadbeef
1

write@got
4

readelf –r multi_stage

write@got à 0x0804a014

Page § 21

multi_stage.c: leak the libc base address

write(1, write@got, 4) leak write@libc’s address

dummy “A” * 28
write@plt

0xdeadbeef
1

write@got
4

Page § 22

multi_stage.c: ROP chain to clean Stack

dummy “A” * 28
write@plt

0xdeadbeef
1

write@got
4

Remember that what we are doing is creating a rop
chain with these PLT stubs.

However, if we just return into functions after
functions, it is not going to work very well since the
parameters on the stack are not cleaned up. We have
to handle that somehow

pop pop pop ret

How to find pop pop pop ret gadget?

pop pop pop ret

Page § 23

multi_stage.c: ROP chain to clean Stack

pop pop pop ret Use ROPgadget program to find gadget

pop pop pop ret: 0x08048529

Page § 24

multi_stage.c: ROP chain to clean Stack

pop pop pop ret: 0x08048529

dummy “A” * 28
write@plt

pop_pop_pop_ret
1

write@got
4

What should we do next then?
GOT Overwrite!

Page § 25

multi_stage.c: GOT Overwrite!

read(0, write@got, 4)

0x0804a014 0xf7e446f0
write@got:

change write@libc to system@libc

0xf7d24000 libc base
0xf7d60d10 system()

dup2()
read()

0xf7e446f0 write()
0xf7d8b360 puts()

libc

Read 4 bytes of input from us into the write GOT entry.

0xf7d60d10

write(”/bin/sh”);

system(”/bin/sh”);

Page § 26

multi_stage.c: GOT Overwrite!

What should we do next then?
GOT Overwrite!

1. write(1, write@got, 4) - Leaks the libc address of write
2. read(0, write@got, 4) - Read 4 bytes of input from us into the
write GOT entry.
3. system(some_cmd) - Execute a command of ours and hopefully
get shell

Page § 27

multi_stage.c: GOT Overwrite!

1.read(0, write@got, 4) - Read 4 bytes of input from us into the write
GOT entry.

Send the memory address of system@libc to the program

How to calculate system@libc?

0xf7d70970 libc base
0xf7dadb70 system()

dup2()
read()

0xf7e576f0 write()
puts()

offset_write
0x000e6d80

libc base = write@libc - offset_write

Page § 28

multi_stage.c: GOT Overwrite!

1.read(0, write@got, 4) - Read 4 bytes of input from us into the write
GOT entry.

Send the memory address of system@libc to the program

How to calculate system@libc?

0xf7d70970 libc base
0xf7dadb70 system()

dup2()
read()

0xf7e576f0 write()
puts()

offset_system
0x0003d200

system_addr = libc base + offset_system

Page § 29

multi_stage.c: GOT Overwrite!

system(some_cmd) - Execute a command of ours and hopefully get
shell

Where to find “some_cmd”? Search existing strings inside binary

Two choices:
1. Expand another read sequence to write “/bin/sh” somewhere in memory
2. Use an alternative command (like ed)

search for “bin/sh” à 0 result L

search for “ed” à 4 results ;)

Page § 30

multi_stage.c: GOT Overwrite!

system(ed) - Execute ed command

Use GDB to search memory address for string ending with ”ed”

0x8048243 gdb multi_stage
br main
r
find ed

Type the following:

Page § 31

multi_stage.c: GOT Overwrite!

1. write(1, write@got, 4) - Leaks the libc address of write
2. read(0, write@got, 4) - Read 4 bytes of input from us into the write GOT entry.
3. system(some_cmd) - Execute a command of ours and hopefully get shell

dummy “A” * 28
write@plt

pop_pop_pop_ret
1

write@got
4

read@plt
pop_pop_pop_ret

0
write@got

4
system@plt à write@plt

4 byte junk data (e.g. 0xdeadbeef)
”ed” string

Page § 32

multi_stage.c: GOT Overwrite!

1. write(1, write@got, 4) - Leaks the libc address of write
2. read(0, write@got, 4) - Read 4 bytes of input from us into the write GOT entry.
3. system(some_cmd) - Execute a command of ours and hopefully get shell

dummy “A” * 28
write@plt

pop_pop_pop_ret
1

write@got
4

read@plt
pop_pop_pop_ret

0
write@got

4
system@plt à write@plt

junk data (e.g. 0xdeadbeef)
”ed” string

buffer overflow

leak information

got overwrite

spawn shell

Page § 33

Pwn Script

stage 0 & 1:
Buffer overflow &
Information leakage

stage 2&3:
got overwrite & spawn
shell

Page § 34

Pwn Script

Page § 35

Binary Protection Mechanism

§NX/DEP (turn off execution)

§ASLR (Randomize the address)

turn off stack guard

Page § 36

StackGuard

https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf

Cowan, Crispan, et al. "Stackguard: automatic adaptive detection and prevention of buffer-overflow attacks." USENIX
Security Symposium. Vol. 98. 1998.

• Sometimes called Stack Canaries, or Cookies
• Insert Canary (random integer) before the function being called.
• Check this value to see if it been tweaked PRIOR to Function RETURN

Page § 37

“Canaries”

Canaries were iconically used in coal mines to
detect the presence of carbon monoxide.

The bird's rapid breathing rate, small size, and
high metabolism, compared to the miners, led
birds in dangerous mines to succumb before the
miners, thereby giving them time to take action.

Page § 38

StackGuard -- History

In 1998, the first canary was introduced and was hardcoded

0xDEADBEEF

Page § 39

StackGuard

• Terminator canary
• CR, LF, 00, -1

• Single random canary
• Using /dev/random

• Single XOR random canary
• Xor-ed return address

Page § 40

Drawbacks

1. Adds overhead (huge cache footprint)
2. Only defends against stack overflows
3. NULL canaries can potentially be abused
4. Random canaries can potentially be learned

Page § 41

Bypass StackGuard

How to bypass StackGuard?

Page § 42

StackGuard: Brute force stack reading

• Overwrite canary byte by byte and try every possible value
• If no crash à success
• Crash à wrong guess

• Requires same canary
for each thread, so can’t
call execve() 0xCAFEBABE

-Buffer- BE BA FE CA

AAAA… 01 BA FE CA

Canary (0xCAFEBABE):

Brute force attack for finding the first byte -- “BE”:
Crash!

AAAA… 02 BA FE CA

AAAA… BD BA FE CA

Crash!

Crash!
…

AAAA… BE BA FE CA No crash!

Page § 43

Brute Force Attack -- Examples

easy_canary_32.c easy_canary_64.c

Page § 44

Brute Force Attack -- Examples

easy_canary_32.c
easy_canary_64.c

First, download both files into a folder. And compile it by typing:

Then, create a file with name flag and type some text

Execute the Python script: easy_canary_32.py or
easy_canary_64.py

Page § 45

Format String Bug

Page § 46

Format String Bug

printf("%s %d\n", str, a);
fprintf(stderr, "%s %d\n", str, a);
sprintf(buffer, "%s %d\n", str, a);

What is a Format String?

A Format String is an ASCII string that contains text and format parameters

E.g.

My name is Chen

Page § 6

Format String Bug

printf("%s %d\n", str, a);
fprintf(stderr, "%s %d\n", str, a);
sprintf(buffer, "%s %d\n", str, a);

What is a Format String?

A Format String is an ASCII string that contains text and format parameters

E.g.

My name is Chen

Page § 47

Format String Bug

Page § 48

Format String Bug

The wrong way…

Page § 49

Page § 50

Example: fmt_wrong.c

Page § 51

Example: fmt_wrong.c

the argument is passed directly to the “printf” function.
the function didn’t find a corresponding variable or value on
stack so it will start popping values off the stack

%08x. %08x. %08x. %08x. %08x. %08x. %08x. %08x. %08x. %08x.
%08x. %08x. %08x. %08x. %08x. %08x. %08x. %08x. %08x. %08x.
%08x. %08x. %08x. %08x.%08x. %08x. %08x. %08x. %08x. %08x.
%08x. %08x. %08x. %08x. %08x. %08x.

Page § 52

Example: fmt_wrong.c

Page § 53

Example: fmt_wrong.c

Notice that the value “41414141” was popped off the stack
which means the prepended string is written on stack

Page § 54

Advanced Usage: Format String Direct Access

this let’s try to directly access the 12th parameter on
stack using the dollar sign qualifier. “%12$x” is used
which will read the 12th parameter on stack

Page § 55

Advanced Usage: Format String Direct Access

Page § 56

What is this BUG used for?

Read data in any memory address:
• %s to read data in an arbitrary memory address

Write data in any memory address:
• printf not only allows you to read but also write
• %n

Page § 57

fmt_write.c

In C printf(), %n is a special format specifier which instead of printing
something causes printf() to load the variable pointed by the
corresponding argument with a value equal to the number of
characters that have been printed by printf() before the occurrence
of %n.

Page § 58

Write data in any memory address:

%n à DWORD
%hn à WORD
%hhn à BYTE

Page § 59

Format String Bug Example:

Goal: Modify token from 0xdeadbeef to 0xcafebabe

Page § 60

Format String Bug Example:

Goal: Modify token from 0xdeadbeef to 0xcafebabe

use nm to find token’s address

Page § 61

What is this BUG used for?

Disclose sensitive information:
• Variable(s)
• EBP value
• The correct location for putting Shellcode

Page § 62

What is this BUG used for?

Disclose StackGuard Canary:
• By pass stack checking

Page § 63

What is this BUG used for?

Disclose Library Address
• When enable ASLR, the library address will change each time

Ø It’s impossible to call these functions in your shellcode (e.g.
system())

• Use this bug to disclose one function’s address in a given library.
Ø you can use it to deduce other function’s address

Page § 64

What is this BUG used for?

Disclose Library Address
• When enable ASLR, the library address will change each time

Ø It’s impossible to call these functions in your shellcode (e.g.
system())

• Use this bug to disclose one function’s address in a given library.
Ø you can use it to deduce other function’s address

Page § 65

• DEP & ASLR are the two main pillars of modern
exploit mitigation technologies

• Congrats, being able to bypass these mean that
you’re probably capable of writing exploits for real
vulnerabilities

Page § 66

Bypass ASLR/NX Hack (Ret2plt, GOT
Overwrite) Review

Page § 67

ASLR Hack (Ret2plt, GOT Overwrite) Review

On Linux, not everything is randomized...

Page § 68

Position Independent Executable

Executables compiled such that their base address does not matter,
‘position independent code’

• Shared Libs must be compiled like this on modern Linux

• eg: libc

• Known as PIE for short

Page § 69

Position Independent Executable

To make an executable position independent, you must compile it with the
flags -pie -fPIE

Without these flag, you are not taking full advantage of ASLR

Page § 70

Position Independent Executable

• Most system binaries aren’t actually compiled as PIE in 2015

• In 2018, nearly all system binaries are compiled as PIE

Page § 71

