
CSC 495/583 Topics of Software Security
PLT, GOT & 

Return-to-plt Attack & 
GOT Overwrite Attack

Dr. Si Chen (schen@wcupa.edu)

Class8



Page § 2

Review



Page § 3

ret2libc Attack



Page § 4

libc

§ C standard library 
§ Provides functionality for string handling, mathematical computations, 

input/output processing, memory management, and several other 
operating system services
– <stdio.h>
– <stdlib.h>
– <string.h>

However, if we had these addresses into libc, we could 
simplify our exploit to reuse useful functions. One such 
useful function could be the system() function. 
à find System() function’s address



Page § 5

Ret2lib Shellcode Structure

Dummy Characters
Address for System()@pltà 08049070
0xdeadbeef
Address for Command String (“e.g. /bin/sh”)

Function Address

Return Address (Old EIP)

Arguments



Page § 6

Shutdown ASLR

Shutdown ASLR (Address space layout randomization)



Page § 7

Address Space Layout Randomization (ASLR)

• Address Space Layout Randomization (ASLR) is a technology used 
to help prevent shellcode from being successful. 

• It does this by randomly offsetting the location of modules and 
certain in-memory structures.



Page § 8

PLT, GOT & Return-to-plt Attack



Page § 9

Bypassing ASLR/NX with Ret2PLT



Page § 10

How to bypass ASLR/NX?

When ASLR has been enabled, we no longer can be sure where the libc will 
be mapped at. 

However, that begs the question: how does the binary know 
where the address of anything is now that they are 
randomized? 

The answer lies in something called the Global Offset Table (GOT) and the 
Procedure Linkage Table (PLT).



Page § 11

Call Function(s) in libc



Page § 12

Call Function(s) in libc



Page § 13

ASM CALL

Call’s in ASM are ALWAYS to absolute address

How does it work with dynamic addresses for shared libraries?

Solution: 
• A “helper” at static location
• In Linux: the Global Offset Table (GOT) and the 

Procedure Linkage Table (PLT).(they work together in 
tandem)



Page § 14

Global Offset Table

• To handle functions from dynamically loaded objects, the compiler 
assigns a space to store a list of pointers in the binary. 

• Each slot of the pointers to be filled in is called a 'relocation' entry. 
• This region of memory is marked readable to allow for the values for the 

entries to change during runtime.

ret2plt.c gcc ret2plt.c -m32 -o ret2plt -no-pie -fno-stack-protector

We can take a look at the '.got' segment of the binary 
with readelf.



Page § 15

Global Offset Table

Let's take the read entry in the GOT as an example. If we hop onto gdb, 
and open the binary in the debugger without running it, we can examine 
what is in the GOT initially.

0x08048346: An address within the Procedure Linkage Table (PLT)



Page § 16

Global Offset Table

If we run it and break just before the program ends, we can see 
that the value in the GOT is completely different and now points 
somewhere in libc.



Page § 17

Procedure Linkage Table (PLT)

When you use a libc function in your code, the compiler does not 
directly call that function but calls a PLT stub instead. 

Let's take a look at the disassembly of the read function in PLT.

Here's what's going on here when the function is run for the first time:
1.The read@plt function is called.
2.Execution reaches jmp DWORD PTR ds:0x804a00c and the memory address 0x804a00c is 
dereferenced and is jumped to. If that value looks familiar, it is. It was the address of the GOT 
entry of read.
3.Since the GOT contained the value 0x08048346 initially, execution jumps to the next 
instruction of the read@plt function because that's where it points to.
4.The dynamic loader is called which overwrites the GOT with the resolved address.
5.Execution continues at the resolved address.



Page § 18

Procedure Linkage Table (PLT)



Page § 19

Procedure Linkage Table (PLT)

How does it work?

• “call system” is actually call system@plt
• The PLT resolves system@libc at runtime
• The PLT stores system@libc in system@got



Page § 20

Call System() Function in libc with PLT, GOT



Page § 21

Call System() Function in libc with PLT, GOT



Page § 22

Call System() Function in libc with PLT, GOT



Page § 23

Lazy Binding

1st time call System()

After the 1st System() call system@libc



Page § 24

Bypass ASLR/NX with Ret2plt Attack

Enable ASLR (Address space layout randomization)

ret2plt.c



Page § 25

Bypass ASLR/NX with Ret2plt Attack

ret2plt.c

PIE Position independent executable

http://www.wikipedia.org/wiki/Position_independent_code


Page § 26

Check PLT stub Address

0x08048370
For system@plt



Page § 27

Find Useable String as Parameter for System() function

The sheep are blue, 
but you see red



Page § 28

Pwn Script



Page § 29

Bypassing ASLR/NX with GOT Overwrite Attack



Page § 30

bypassGOT.c



Page § 31

bypassGOT.c

The program is vulnerable in two ways:
1.It provides an information leak opportunity when 
the now_playing.album pointer is overwritten and the album name 
is printed.
2.It provides a write what where primitive when 
the now_playing.album pointer is overwritten and input is provided 
to the second prompt.



Page § 32

Struct.c



Page § 33

Struct.c



Page § 34

bypassGOT.c

If we take a look at the source code again, the following function is called 
last:

puts(now_playing.name);
If we leak the address of puts in libc, we can calculate the address of the 
libc base and subsequently, the address of the system function. Also, once 
we have that, we can write the address of the system function into the 
puts@got entry so that when this final line executes, it will actually 
execute:

system(now_playing.name);
Which means that system will be called with a parameter that we control!



Page § 35

Pwn Script



Page § 36


