
CSC 471 Modern Malware Analysis
Code Injection (2)

Si Chen (schen@wcupa.edu)

Class13

Page § 2

Code Injection

Code injection is the term used to describe attacks that
inject code into an application. That injected code is then
interpreted by the application.

Page § 3

Code Injection (thread injection)

CodeInjection.exe
Process

(1) Inject data & code
(2) Execute

target.exe
Process

ThreadParam

ThreadProc()
{…}

code à injected by ThreadProc()
data à injected as ThreadParam

Page § 4

Why Code Injection

§ 1. Use less memory à you don’t need to compile it as DLL
§ 2. Hard to detect à DLL injection can easily be spotted, code injection is

very sneaky.

§ In short:
– DLL injection is for huge code base and complex logic.
– Code injection is for small code base with simple logic.

Page § 5

DLL Injection V.S. Code Injection

Pop up a Windows message box

How to use DLL Injection to injection the code?

Page § 6

myhack.cpp

Page § 7

DLL Injection V.S. Code Injection

How to use DLL Injection to injection the code?

Compile it as MsgBox.dll and inject it to the target process
same as DLL injection lab!

https://learn.microsoft.com/en-
us/windows/win32/api/winuser/
nf-winuser-messagebox

Page § 8

DLL Injection (MsgBox.dll)

Page § 9

DLL Injection (MsgBox.dll)

Notepad.exe Process

kernel32.dll
user32.dll
gdi32.dll

shell32.dll
advapi32.dll
ntdll32.dll

myhack.dll myhack.dll

.text
.data
.rsrc

DLL Injection
execute DllMain()

in myhack.dll

Page § 10

Code Injection

You need to inject the code

And the data:

Page § 11

Code Injection Example (CodeInjection.exe)

Page § 12

CodeInjection.cpp – main()

Page § 13

CodeInjection.cpp – ThreadProc()

Page § 14

CodeInjection.cpp – ThreadProc()

hMod = LoadLibraryA(“user32.dll”);

pFunc = GetProcAddress(hMod, “MessageBoxA”);

pFunc(NULL, “www.reversecore.com”, “ReverseCore”, MB_OK);

http://www.reversecore.com/

Page § 15

Cannot use the following address for Code Injection

CodeInjection.exe
Process

(1) Inject data & code
(2) Execute

target.exe
Process

ThreadParam

ThreadProc()
{…}

Page § 16

You cannot use the address provided for code injection.

Because
MessageBoxA
and Caption and
“Text” are not
loaded, these
addresses cannot
be used for code
injection.

Page § 17

CodeInjection.cpp – InjectCode()

Page § 18

CodeInjection.cpp – InjectCode()

Page § 19

CodeInjection.cpp – InjectCode()

§ OpenProcess()

§ //data: THREAD_PARAM
§ VirtualAllocEx()

§ WriteProcessMemory()

§ //Code: ThreadProc()
§ VirtualAllocEx()

§ WriteProcessMemory()

§ CreateRemoteThread()

// Prepare the THREAD_PARAM structure with necessary function pointers and
strings.
// Open the target process with necessary privileges.
// Allocate memory in the target process for THREAD_PARAM.
// Write THREAD_PARAM to the allocated memory in the target process.
// Allocate memory for the ThreadProc function in the target process and set
it to executable.
// Write the ThreadProc function to the allocated memory in the target
process.
// Create a remote thread in the target process that starts at the ThreadProc
function.
// Wait for the thread to complete execution.
// Close handles and return TRUE on successful injection.

Page § 20

How to Debug Code Injection (OllyDBG)

Page § 21

Ancient forbidden technique: manual code injection.

Page § 22

Page § 23

Page § 24

Portable Executable (PE) file

§ A Portable Executable (PE) file is the standard binary file format for an
Executable (.exe) or DLL under Windows NT, Windows 95, and Win32.

§ Derived from COFF (Common Object File Format) in UNIX platform, and it
is not really “portable”.

Now here is the kicker. Even though this specification is
spelled out by Microsoft, compilers/linkers chose to ignore
some parts of it.

To make things even worse, the Microsoft loader doesn't
enforce a good portion of this specification and instead
makes assumptions if things start getting weird.

So even though the spec outlined here says a particular
field is supposed to hold a certain value, the
compiler/linker or even a malicious actor could put
whatever they want in there and the program will
likely still run...

Page § 25

Portable Executable (PE) file

§ PE formatted files include:
– .exe, .scr (executable)
– .dll, .ocx, .cpl, drv (library)

– .sys, .vxd (driver files)
– .obj (objective file)

§ All PE formatted files can be executed, except obj file.
– .exe, .scr can be directly executed inside Shell (explorer.exe)
– others can be executed by other program/service

§ PE refers to 32 bit executable file, or PE32. 64 bit executable file is
named as PE+ or PE32+. (Note that it is not PE64).

Page § 26

PE Example – Notepad.exe

Page § 27

Load PE file (Notepad.exe) into Memory

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL
Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
00000000
00000040

000000E0

000001D8
00000200
00000228

00000400

00007C00

00008400

00010800

<File> <Memory>

8400

800

7800

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL

Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
01000000
01000040

010000E0

010001D8
01000200
01000228

01001000

01009000

0100B000

01014000

8314

1BA8

7748

Notepad.exe

Page § 28

Page § 29

VA & RVA

§ VA (Virtual Address): The address is called a “VA” because Windows
creates a distinct VA space for each process, independent of physical
memory. For almost all purposes, a VA should be considered just an
address. A VA is not as predictable as an RVA because the loader might
not load the image at its preferred location.

§ RVA (Relative Virtual Address): The address of an item after it is loaded
into memory, with the base address of the image file subtracted from it.
The RVA of an item almost always differs from its position within the file
on disk (file pointer).

RVA + ImageBase = VA

In 32bit Windows OS, each process has 4GB virtual memory
which means the range of VA is: 00000000 - FFFFFFFF

Page § 30

DOS Header

The first 2 letters are always the
letters "MZ", the initials of Mark
Zbikowski, who created the first linker
for DOS. To some people, the first few
bytes in a file that determine the type
of file are called the "magic number,"

Page § 31

DOS Header

value for e_lfanew à ?
E0 00 00 00

long à 32 bit à ? Byte

Page § 32

DOS Header

e_lfanew à 000000E0

Page § 33

DOS stub

https://virtualconsoles.com/online-emulators/dos/

https://virtualconsoles.com/online-emulators/dos/

Page § 34

NT Header

https://docs.microsoft.com/en-
us/windows/desktop/api/winnt/

Page § 35

NT Header

Page § 36

Section Header

Name Privilege
.code Executable, read
.data Non-Executable, read/write

.resource Non-Executable, read

Page § 37

Section Header

Page § 38

Section Header

Members Meaning
VirtualSize The total size of the

section when loaded into
memory, in bytes.

VirtualAddress The address of the first
byte of the section when
loaded into memory (RVA)

SizeOfRaw Data The size of the section
data on disk, in bytes.

PointerToRawData The address of the first
byte of the section on

disk.
Characteristics The characteristics of the

image.

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL
Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
00000000
00000040

000000E0

000001D8
00000200
00000228

00000400

00007C00

00008400

00010800

<File> <Memory>

8400

800

7800

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL

Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
01000000
01000040

010000E0

010001D8
01000200
01000228

01001000

01009000

0100B000

01014000

8314

1BA8

7748

Notepad.exe

https://docs.microsoft.com/en-
us/windows/desktop/api/winnt/ns-winnt-
_image_section_header

Page § 39

Section Header

Page § 40

Inspecting PE Header Information in Linux

Page § 41

Inspecting PE Header Information

Page § 42

Inspecting file imports with pefile library

Page § 43

Inspecting file export with pefile library

Page § 44

Inspecting PE Header Information in Linux

Page § 45

Inspecting PE Header Information

