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Portable Executable (PE) file

▪ A Portable Executable (PE) file is the standard binary file format for an 

Executable (.exe) or DLL under Windows NT, Windows 95, and Win32.

▪ Derived from COFF (Common Object File Format) in UNIX platform, and it 

is not really “portable”.

Now here is the kicker. Even though this specification is 
spelled out by Microsoft, compilers/linkers chose to ignore 

some parts of it. 

To make things even worse, the Microsoft loader doesn't 
enforce a good portion of this specification and instead 
makes assumptions if things start getting weird. 

So even though the spec outlined here says a particular 

field is supposed to hold a certain value, the 
compiler/linker or even a malicious actor could put 
whatever they want in there and the program will 

likely still run...



Page ▪ 3

Portable Executable (PE) file

▪ PE formatted files include:

– .exe, .scr (executable)

– .dll, .ocx, .cpl, drv (library)

– .sys, .vxd (driver files)

– .obj (objective file)

▪ All PE formatted files can be executed, except obj file. 

– .exe, .scr can be directly executed inside Shell (explorer.exe)

– others can be executed by other program/service

▪ PE refers to 32 bit executable file, or PE32. 64 bit executable file is 

named as PE+ or PE32+. (Note that it is not PE64).
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PE Example – Notepad.exe
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Load PE file (Notepad.exe) into Memory
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VA & RVA

▪ VA (Virtual Address): The address is called a “VA” because Windows 

creates a distinct VA space for each process, independent of physical 

memory. For almost all purposes, a VA should be considered just an 

address. A VA is not as predictable as an RVA because the loader might 

not load the image at its preferred location.

▪ RVA (Relative Virtual Address): The address of an item after it is loaded 

into memory, with the base address of the image file subtracted from it. 

The RVA of an item almost always differs from its position within the file 

on disk (file pointer).

RVA  + ImageBase = VA

In 32bit Windows OS, each process has 4GB virtual memory

which means the range of VA is: 00000000 - FFFFFFFF
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DOS Header

The first 2 letters are always the 

letters "MZ", the initials of Mark 

Zbikowski, who created the first linker 

for DOS. To some people, the first few 

bytes in a file that determine the type 

of file are called the "magic number,"
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DOS Header

value for e_lfanew → ?

E0 00 00 00

long → 32 bit → ? Byte
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DOS Header

e_lfanew → 000000E0
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DOS stub

https://virtualconsoles.com/online-emulators/dos/

https://virtualconsoles.com/online-emulators/dos/
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NT Header

https://docs.microsoft.com/en-

us/windows/desktop/api/winnt/
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NT Header
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Section Header

Name Privilege 

.code Executable, read

.data Non-Executable, read/write

.resource Non-Executable, read
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Section Header
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Section Header

Members Meaning

VirtualSize The total size of the 

section when loaded into 

memory, in bytes.

VirtualAddress The address of the first 

byte of the section when 

loaded into memory (RVA)

SizeOfRaw Data The size of the section 

data on disk, in bytes. 

PointerToRawData The address of the first 

byte of the section on 

disk.

Characteristics The characteristics of the 

image.

https://docs.microsoft.com/en-

us/windows/desktop/api/winnt/ns-winnt-

_image_section_header
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Section Header
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Inspecting PE Header Information in Linux
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Inspecting PE Header Information
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Inspecting file imports with pefile library
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Inspecting file export with pefile library
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Inspecting PE Header Information in Linux
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Inspecting PE Header Information
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IAT (Import Address Table)
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Two ways to Load DLL
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Two ways to Load DLL

▪ Explicit Linking (run-time dynamic linking)

– the executable using the DLL must make function calls to explicitly load and 

unload the DLL, and to access the DLL's exported functions.  

▪ Implicit Linking (load-time dynamic linking)

– The operating system loads the DLL when the executable using it is loaded.

An executable file links to (or loads) a DLL in one of two ways:
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Two ways to Load DLL

Notepad.exe Process

kernel32.dll

user32.dll

gdi32.dll

shell32.dll

advapi32.dll

ntdll32.dll

myhack.dll

myhack.dll

.text

.data

.rsrc

DLL Injection

Implicit Linking 

(load-time 

dynamic linking)

Explicit Linking (run-

time dynamic linking)
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Two ways to Load DLL

▪ Explicit Linking (run-time dynamic linking)

– the executable using the DLL must make function calls to explicitly load and 

unload the DLL, and to access the DLL's exported functions.  

▪ Implicit Linking (load-time dynamic linking)

– The operating system loads the DLL when the executable using it is loaded.

An executable file links to (or loads) a DLL in one of two ways:

DLL Injection

IAT Table
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Implicit Linking and IAT (Import Address Table)

▪ Notepad.exe Call CreateFileW() → Call 0x01001104 → Call 0x7C810CD9
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Implicit Linking and IAT (Import Address Table)

▪ Notepad.exe Call CreateFileW() → Call 0x01001104 → Call 0x7C810CD9

Call 0x01001104

IAT Table

Function Name IAT Address Real Address

…

CreateFileW() 0x01001104 0x7C810CD9

…

When the application was first compiled, it was designed so that all API calls will 
NOT use direct hardcoded addresses but rather work through a function 
pointer.

This was accomplished through the use of an import address table. This is a 
table of function pointers filled in by the windows loader as the dlls are loaded.

Look up
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IAT (Import Address Table)

Why IAT?
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IAT (Import Address Table)

Call CreateFileW() --> Call 0x01001104

IAT Table

Function Name IAT Address Real Address

…

CreateFileW() 0x01001104 0x7C810CD9

…

Look up

▪ Support different Windows Version (9X, 2K, XP, Vista, 7, 8, 10)

XP

Function Name IAT Address Real Address

…

CreateFileW() 0x01001104 0x7C81FFFF

…

Windows 7
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IAT (Import Address Table)

▪ Support DLL Relocation
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Look up IAT Table with PEview
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Import Directory Table

▪ The Import Directory Table contains entries for every DLL which is loaded 

by the executable. Each entry contains, among other, Import Lookup 

Table (ILT) and Import Address Table (IAT)



Page ▪ 36

Inspecting file imports with pefile library
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Real-world Case Study
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16d6b0e2c77da2776a88dd88c7cfc672
(Trojan.Win32.Dllhijack.a)
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16d6b0e2c77da2776a88dd88c7cfc672
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16d6b0e2c77da2776a88dd88c7cfc672
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16d6b0e2c77da2776a88dd88c7cfc672

▪ https://www.hybrid-

analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155

240581f4aa554be17925c?environmentId=100

https://www.hybrid-analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155240581f4aa554be17925c?environmentId=100
https://www.hybrid-analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155240581f4aa554be17925c?environmentId=100
https://www.hybrid-analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155240581f4aa554be17925c?environmentId=100
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0fd6e3fb1cd5ec397ff3cdbaac39d80c
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6a764e4e6db461781d080034aab85aff

&

cc3c6c77e118a83ca0513c25c208832c
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e0bed0b33e7b6183f654f0944b607618



Page ▪ 48

e0bed0b33e7b6183f654f0944b607618
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db8199eeb2d75e789df72cd8852a9fbb
(Rootkit.Win32.blackken.b)
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db8199eeb2d75e789df72cd8852a9fbb

Is this claim correct?

 If two export functions share the same address, it’s a malware.
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1c1131112db91382b9d8b46115045097
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1c1131112db91382b9d8b46115045097
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EAT (Export Address Table)

▪ Similar to IAT, EAT data is stored in IMAGE_EXPORT_DIRECTORY

▪ EAT contains an RVA that points to an array of pointers to (RVAs of) the 

functions in the module.
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Lab3

▪ Create your own anti-malware system based on heuristic analysis.

▪ Check course website
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