
CSC 471 Modern Malware Analysis

PE Structure (2)
Si Chen (schen@wcupa.edu)

Class12

Page ▪ 2

Portable Executable (PE) file

▪ A Portable Executable (PE) file is the standard binary file format for an

Executable (.exe) or DLL under Windows NT, Windows 95, and Win32.

▪ Derived from COFF (Common Object File Format) in UNIX platform, and it

is not really “portable”.

Now here is the kicker. Even though this specification is
spelled out by Microsoft, compilers/linkers chose to ignore

some parts of it.

To make things even worse, the Microsoft loader doesn't
enforce a good portion of this specification and instead
makes assumptions if things start getting weird.

So even though the spec outlined here says a particular

field is supposed to hold a certain value, the
compiler/linker or even a malicious actor could put
whatever they want in there and the program will

likely still run...

Page ▪ 3

Portable Executable (PE) file

▪ PE formatted files include:

– .exe, .scr (executable)

– .dll, .ocx, .cpl, drv (library)

– .sys, .vxd (driver files)

– .obj (objective file)

▪ All PE formatted files can be executed, except obj file.

– .exe, .scr can be directly executed inside Shell (explorer.exe)

– others can be executed by other program/service

▪ PE refers to 32 bit executable file, or PE32. 64 bit executable file is

named as PE+ or PE32+. (Note that it is not PE64).

Page ▪ 4

PE Example – Notepad.exe

Page ▪ 5

Load PE file (Notepad.exe) into Memory

Page ▪ 6

Page ▪ 7

VA & RVA

▪ VA (Virtual Address): The address is called a “VA” because Windows

creates a distinct VA space for each process, independent of physical

memory. For almost all purposes, a VA should be considered just an

address. A VA is not as predictable as an RVA because the loader might

not load the image at its preferred location.

▪ RVA (Relative Virtual Address): The address of an item after it is loaded

into memory, with the base address of the image file subtracted from it.

The RVA of an item almost always differs from its position within the file

on disk (file pointer).

RVA + ImageBase = VA

In 32bit Windows OS, each process has 4GB virtual memory

which means the range of VA is: 00000000 - FFFFFFFF

Page ▪ 8

DOS Header

The first 2 letters are always the

letters "MZ", the initials of Mark

Zbikowski, who created the first linker

for DOS. To some people, the first few

bytes in a file that determine the type

of file are called the "magic number,"

Page ▪ 9

DOS Header

value for e_lfanew → ?

E0 00 00 00

long → 32 bit → ? Byte

Page ▪ 10

DOS Header

e_lfanew → 000000E0

Page ▪ 11

DOS stub

https://virtualconsoles.com/online-emulators/dos/

https://virtualconsoles.com/online-emulators/dos/

Page ▪ 12

NT Header

https://docs.microsoft.com/en-

us/windows/desktop/api/winnt/

Page ▪ 13

NT Header

Page ▪ 14

Section Header

Name Privilege

.code Executable, read

.data Non-Executable, read/write

.resource Non-Executable, read

Page ▪ 15

Section Header

Page ▪ 16

Section Header

Members Meaning

VirtualSize The total size of the

section when loaded into

memory, in bytes.

VirtualAddress The address of the first

byte of the section when

loaded into memory (RVA)

SizeOfRaw Data The size of the section

data on disk, in bytes.

PointerToRawData The address of the first

byte of the section on

disk.

Characteristics The characteristics of the

image.

https://docs.microsoft.com/en-

us/windows/desktop/api/winnt/ns-winnt-

_image_section_header

Page ▪ 17

Section Header

Page ▪ 18

Inspecting PE Header Information in Linux

Page ▪ 19

Inspecting PE Header Information

Page ▪ 20

Inspecting file imports with pefile library

Page ▪ 21

Inspecting file export with pefile library

Page ▪ 22

Inspecting PE Header Information in Linux

Page ▪ 23

Inspecting PE Header Information

Page ▪ 24

IAT (Import Address Table)

Page ▪ 25

Two ways to Load DLL

Page ▪ 26

Two ways to Load DLL

▪ Explicit Linking (run-time dynamic linking)

– the executable using the DLL must make function calls to explicitly load and

unload the DLL, and to access the DLL's exported functions.

▪ Implicit Linking (load-time dynamic linking)

– The operating system loads the DLL when the executable using it is loaded.

An executable file links to (or loads) a DLL in one of two ways:

Page ▪ 27

Two ways to Load DLL

Notepad.exe Process

kernel32.dll

user32.dll

gdi32.dll

shell32.dll

advapi32.dll

ntdll32.dll

myhack.dll

myhack.dll

.text

.data

.rsrc

DLL Injection

Implicit Linking

(load-time

dynamic linking)

Explicit Linking (run-

time dynamic linking)

Page ▪ 28

Two ways to Load DLL

▪ Explicit Linking (run-time dynamic linking)

– the executable using the DLL must make function calls to explicitly load and

unload the DLL, and to access the DLL's exported functions.

▪ Implicit Linking (load-time dynamic linking)

– The operating system loads the DLL when the executable using it is loaded.

An executable file links to (or loads) a DLL in one of two ways:

DLL Injection

IAT Table

Page ▪ 29

Implicit Linking and IAT (Import Address Table)

▪ Notepad.exe Call CreateFileW() → Call 0x01001104 → Call 0x7C810CD9

Page ▪ 30

Implicit Linking and IAT (Import Address Table)

▪ Notepad.exe Call CreateFileW() → Call 0x01001104 → Call 0x7C810CD9

Call 0x01001104

IAT Table

Function Name IAT Address Real Address

…

CreateFileW() 0x01001104 0x7C810CD9

…

When the application was first compiled, it was designed so that all API calls will
NOT use direct hardcoded addresses but rather work through a function
pointer.

This was accomplished through the use of an import address table. This is a
table of function pointers filled in by the windows loader as the dlls are loaded.

Look up

Page ▪ 31

IAT (Import Address Table)

Why IAT?

Page ▪ 32

IAT (Import Address Table)

Call CreateFileW() --> Call 0x01001104

IAT Table

Function Name IAT Address Real Address

…

CreateFileW() 0x01001104 0x7C810CD9

…

Look up

▪ Support different Windows Version (9X, 2K, XP, Vista, 7, 8, 10)

XP

Function Name IAT Address Real Address

…

CreateFileW() 0x01001104 0x7C81FFFF

…

Windows 7

Page ▪ 33

IAT (Import Address Table)

▪ Support DLL Relocation

Page ▪ 34

Look up IAT Table with PEview

Page ▪ 35

Import Directory Table

▪ The Import Directory Table contains entries for every DLL which is loaded

by the executable. Each entry contains, among other, Import Lookup

Table (ILT) and Import Address Table (IAT)

Page ▪ 36

Inspecting file imports with pefile library

Page ▪ 37

Page ▪ 38

Real-world Case Study

Page ▪ 39

16d6b0e2c77da2776a88dd88c7cfc672
(Trojan.Win32.Dllhijack.a)

Page ▪ 40

16d6b0e2c77da2776a88dd88c7cfc672

Page ▪ 41

16d6b0e2c77da2776a88dd88c7cfc672

Page ▪ 42

16d6b0e2c77da2776a88dd88c7cfc672

▪ https://www.hybrid-

analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155

240581f4aa554be17925c?environmentId=100

https://www.hybrid-analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155240581f4aa554be17925c?environmentId=100
https://www.hybrid-analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155240581f4aa554be17925c?environmentId=100
https://www.hybrid-analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155240581f4aa554be17925c?environmentId=100

Page ▪ 43

0fd6e3fb1cd5ec397ff3cdbaac39d80c

Page ▪ 44

Page ▪ 45

6a764e4e6db461781d080034aab85aff

&

cc3c6c77e118a83ca0513c25c208832c

Page ▪ 46

Page ▪ 47

e0bed0b33e7b6183f654f0944b607618

Page ▪ 48

e0bed0b33e7b6183f654f0944b607618

Page ▪ 49

db8199eeb2d75e789df72cd8852a9fbb
(Rootkit.Win32.blackken.b)

Page ▪ 50

db8199eeb2d75e789df72cd8852a9fbb

Is this claim correct?

 If two export functions share the same address, it’s a malware.

Page ▪ 51

1c1131112db91382b9d8b46115045097

Page ▪ 52

1c1131112db91382b9d8b46115045097

Page ▪ 53

EAT (Export Address Table)

▪ Similar to IAT, EAT data is stored in IMAGE_EXPORT_DIRECTORY

▪ EAT contains an RVA that points to an array of pointers to (RVAs of) the

functions in the module.

Page ▪ 54

Lab3

▪ Create your own anti-malware system based on heuristic analysis.

▪ Check course website

	Slide 1
	Slide 2: Portable Executable (PE) file
	Slide 3: Portable Executable (PE) file
	Slide 4: PE Example – Notepad.exe
	Slide 5: Load PE file (Notepad.exe) into Memory
	Slide 6
	Slide 7: VA & RVA
	Slide 8: DOS Header
	Slide 9: DOS Header
	Slide 10: DOS Header
	Slide 11: DOS stub
	Slide 12: NT Header
	Slide 13: NT Header
	Slide 14: Section Header
	Slide 15: Section Header
	Slide 16: Section Header
	Slide 17: Section Header
	Slide 18: Inspecting PE Header Information in Linux
	Slide 19: Inspecting PE Header Information
	Slide 20: Inspecting file imports with pefile library
	Slide 21: Inspecting file export with pefile library
	Slide 22: Inspecting PE Header Information in Linux
	Slide 23: Inspecting PE Header Information
	Slide 24
	Slide 25: Two ways to Load DLL
	Slide 26: Two ways to Load DLL
	Slide 27: Two ways to Load DLL
	Slide 28: Two ways to Load DLL
	Slide 29: Implicit Linking and IAT (Import Address Table)
	Slide 30: Implicit Linking and IAT (Import Address Table)
	Slide 31: IAT (Import Address Table)
	Slide 32: IAT (Import Address Table)
	Slide 33: IAT (Import Address Table)
	Slide 34: Look up IAT Table with PEview
	Slide 35: Import Directory Table
	Slide 36: Inspecting file imports with pefile library
	Slide 37
	Slide 38
	Slide 39
	Slide 40: 16d6b0e2c77da2776a88dd88c7cfc672
	Slide 41: 16d6b0e2c77da2776a88dd88c7cfc672
	Slide 42: 16d6b0e2c77da2776a88dd88c7cfc672
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: e0bed0b33e7b6183f654f0944b607618
	Slide 49
	Slide 50: db8199eeb2d75e789df72cd8852a9fbb
	Slide 51
	Slide 52: 1c1131112db91382b9d8b46115045097
	Slide 53: EAT (Export Address Table)
	Slide 54: Lab3

