
CSC 471 Modern Malware Analysis

Static Analysis & Dynamic Analysis (2)：
（De)Obfuscation

Si Chen (schen@wcupa.edu)

Class8

Page ▪ 2

4298F9DDA63C3C1B17FEF433C082107A
(Trojan.Win32.Agent.b)

Page ▪ 3

Load 4298F9DDA63C3C1B17FEF433C082107A into IDA

Here, we can observe that after obtaining its own module
handle, the program assigns the return value (stored in eax) to
an address, followed by a call. Let’s follow this call to see what it
does

Page ▪ 4

4298F9DDA63C3C1B17FEF433C082107A

First, let’s jump into the
first call to examine its content

Page ▪ 5

4298F9DDA63C3C1B17FEF433C082107A

As we can see, the purpose of this call is to allocate memory space
using the VirtualAlloc function. It is reasonable to believe that the
decrypted code will likely be stored here.

Page ▪ 6

4298F9DDA63C3C1B17FEF433C082107A

Returning to the previous level, let’s examine the content of the
second call

Page ▪ 7

4298F9DDA63C3C1B17FEF433C082107A

Here, we can see that operations such as and, not, and xor are
used for decryption. This is something that should not appear in
a normal program, so we can directly flag it as
malicious: Trojan.Win32.Agent.c.

In fact, this is a self-protection
mechanism used by viruses, known
as obfuscation, or it can also be
understood as a "shell" written by
the virus author for their malicious
program.

Page ▪ 8

Packed and Obfuscated Malware

• Malware writers often use packing or obfuscation to make their

files more difficult to detect or analyze.

• Obfuscated programs are ones whose execution the malware

author has attempted to hide.

• Packed programs are a subset of obfuscated programs in which the

malicious program is compressed and cannot be analyzed.

• Both techniques will severely limit your attempts to statically analyze

the malware.

Page ▪ 9

Packed and Obfuscated Malware

Page ▪ 10

Packers and Cryptos

Page ▪ 11

4fafbfd2e560778f11beb8f736e80bb1
(Trojan.Win32.Agent.b)

Page ▪ 12

4fafbfd2e560778f11beb8f736e80bb1

IDA jump to 0x00613B50, which is the
location of the main function. This is
where the actual code of the sample is
executed and is the focus of our analysis.

Page ▪ 13

In this main function, we primarily analyze the call instructions. For
example, let’s look at the call located at 0x00613BAD.

Page ▪ 14

▪ In this code, we can see many instances of single characters being moved into
memory. As mentioned earlier, this is highly suspicious.

Page ▪ 15 Continuing further, there is another call at 0x006E824A

Page ▪ 16

4fafbfd2e560778f11beb8f736e80bb1

Starting from 0x0067DF63, this is actually a decryption process. Why do
we say that? First, at 0x0067DF68, there is a mov assignment statement,
which assigns the content at address 0x0046B370 to ecx. Let’s take a
look at the content at this address

Page ▪ 17

4fafbfd2e560778f11beb8f736e80bb1

As you can see, this is a bunch of garbled data, likely encrypted.

Page ▪ 18

4fafbfd2e560778f11beb8f736e80bb1

Following this, there is a series of operations, including add (addition)
and xor (exclusive OR). The xor operation, in particular, is a common
decryption technique often used by malicious programs. From the
final inc (increment) and cmp (compare) operations, we can deduce
that ebx holds the number of binary codes to be decrypted, which is 0x67D in
this case.

Page ▪ 19

Dynamic Analysis

Page ▪ 20

Dynamic Analysis

▪ Dynamic analysis is the process of executing malware in a monitored

environment to observe its behaviors.

Page ▪ 21

4fafbfd2e560778f11beb8f736e80bb1

(revisited)
(Trojan.Win32.Agent.b)

Page ▪ 22

Packed and Obfuscated Malware

•Definition:
Obfuscation is a technique used by malware authors to hide malicious code.

•How it works:

• The PE (Portable Executable) file is encrypted and embedded within
the program.

• During execution, the program decrypts and runs the hidden PE file.

•Goal:
To conceal the malicious payload and evade detection

Page ▪ 23

How Obfuscation Works

1.Encryption:
The malicious PE file is encrypted and embedded in the program.

2.Execution:

1. The program allocates memory using functions like VirtualAlloc.

2. Decrypts the PE file into the allocated memory.

3. Executes the decrypted payload.

3.Result:
The malicious code runs hidden from detection tools.

Page ▪ 24

Removing Obfuscation: Key Steps

1.Set Breakpoints:
Use a debugger (e.g., OllyDbg) to set breakpoints on memory allocation
functions like VirtualAlloc.

2.Monitor Memory Allocation:

1. Track the starting address of allocated memory.

2. Set hardware breakpoints to detect writes to this memory.

3.Analyze Decryption:

1. Observe the decryption process in memory.

2. Dump the decrypted PE file for further analysis.

Page ▪ 25

Load target file into OllyDBG

Page ▪ 26

Right click → “Search for”→ Name in all modules

Page ▪ 27

Looking for “VirtualAlloc” func → double click

Page ▪ 28

Here we go into the VirtualAlloc function.

Page ▪ 29

Right click the first line (MOV EDI, EDI) → Breakpoint → Toggle

Page ▪ 30

Click the “play” button (F9) and the program will run and hit the break point

Check out the allocation size → 224 Bytes → too small

Page ▪ 31

Click the “play” button (F9) again.

Check out the allocation size → 903680 Bytes →Good!

Page ▪ 32

Right click ”POP EBP” link (below CALL VirtualAllocEx)

→ ”Breakpoint”→ Run to selection (F4)

Page ▪ 33

Check EAX → 00CB0000

Page ▪ 34
Right click EAX → “follow in Dump”

Page ▪ 35

We follow this address in the data window

Page ▪ 36

Set a hardware access breakpoint at 0x00CB0000.

Right click the first byte at 00CB0000 → “Breakpoint”

→ “Hardware on access”→ “Word”

Page ▪ 37 Click Play button (F9) → Check 00CB0000

Page ▪ 38
Click Play button (F9) again → Check the data window

Page ▪ 39

Click Play button (F9) again → Check the data window

Page ▪ 40

Click Play button (F9) again → Check 00CB0000

Page ▪ 41

Click Play button (F9) again → Check the data window

Page ▪ 42

Page ▪ 43

Page ▪ 44

Using OllyDbg to Remove Obfuscation

1.Set Breakpoint on VirtualAlloc:

1. Run the program and pause at VirtualAlloc.

2. Monitor the return value (memory address) and allocation size.

2.Identify Large Allocations:

1. Focus on large memory allocations (e.g., > 900,000 bytes) typical for PE files.

3.Set Hardware Breakpoint:

1. Set a hardware breakpoint at the allocated memory address.

2. Detect when data is written to this memory.

Page ▪ 45

Q & A

	Slide 1
	Slide 2
	Slide 3: Load 4298F9DDA63C3C1B17FEF433C082107A into IDA
	Slide 4: 4298F9DDA63C3C1B17FEF433C082107A
	Slide 5: 4298F9DDA63C3C1B17FEF433C082107A
	Slide 6: 4298F9DDA63C3C1B17FEF433C082107A
	Slide 7: 4298F9DDA63C3C1B17FEF433C082107A
	Slide 8: Packed and Obfuscated Malware
	Slide 9: Packed and Obfuscated Malware
	Slide 10: Packers and Cryptos
	Slide 11
	Slide 12: 4fafbfd2e560778f11beb8f736e80bb1
	Slide 13
	Slide 14
	Slide 15
	Slide 16: 4fafbfd2e560778f11beb8f736e80bb1
	Slide 17: 4fafbfd2e560778f11beb8f736e80bb1
	Slide 18: 4fafbfd2e560778f11beb8f736e80bb1
	Slide 19
	Slide 20: Dynamic Analysis
	Slide 21
	Slide 22: Packed and Obfuscated Malware
	Slide 23: How Obfuscation Works
	Slide 24: Removing Obfuscation: Key Steps
	Slide 25: Load target file into OllyDBG
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Set a hardware access breakpoint at 0x00CB0000.
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Using OllyDbg to Remove Obfuscation
	Slide 45

