
CSC 471 Modern Malware Analysis

Static Analysis & Dynamic Analysis

Si Chen (schen@wcupa.edu)

Class7

Page ▪ 2

Static Analysis

Page ▪ 3

Fingerprinting the Malware -- Cryptographic Hash

Page ▪ 4

Fingerprinting the Malware

▪ Fingerprinting involves generating the cryptographic hash values for the

suspect binary based on its file content.

▪ Same cryptographic hashing algorithms:

– MD5

– SHA1

– SHA256

▪ Why not just use the file name?

– Ineffective, same malware sample can use different filenames, cryptographic
hash is calculated based on the file content.

▪ File hash is frequently used as an indicator to share with other security

researchers to help them identify the sample.

Page ▪ 5

Tools and Python code

md5sum

sha256sum

sha1sum

Page ▪ 6

Strings

▪ Finding Strings [1]

– A string in a program is a sequence of characters such as “the.”

– A program contains strings if it prints a message, connects to a URL, or copies

a file to a specific location.

– Searching through the strings can be a simple way to get hints about the
functionality of a program.

• For example, if the program accesses a URL, then you will see the URL
accessed stored as a string in the program.

– You can use the Strings program to search an executable for strings, which are

typically stored in either ASCII or Unicode format.

[1]. Practical Malware Analysis, page 11

Page ▪ 7

Static analysis (myhack.dll)

Page ▪ 8

Static analysis (myhack.dll)

Sometimes the strings detected by the

Strings program are not actual strings.

Page ▪ 9

strings in Linux and flare-floss

▪ FireEye Labs Obfuscated String Solver

– Many malware authors evade heuristic detections by obfuscating only key

portions of an executable

• These portions are strings and resources used to configure domains,

files, and other artifacts of an infection

– The FireEye Labs Obfuscated String Solver (FLOSS) uses advanced static

analysis techniques to automatically deobfuscate strings from malware

binaries.

Page ▪ 10

Four-Part Naming Convention

Page ▪ 11

Introduction to Four-Part Naming Convention

▪Four-Part Naming Convention

• Different antivirus vendors use their own naming methods.

• The Four-Part Naming Convention is the most rigorous and accurately reflects the
nature of the malicious program.

• Naming structure:
Type of Malware . Target System Type . Malware Family Name . Variant Number

Page ▪ 12

Four-Part Naming Convention

▪ Example 1: Trojan.Win32.Setiri.b

• Type of Malware: Trojan

• Target System Type: Win32 (32-bit Windows)

• Malware Family Name: Setiri

• Variant Number: b (second variant of the Setiri family)

▪ Interpretation:
This is a Trojan designed to run on 32-bit Windows, belonging to
the Setiri family, and is the second variant of this family.

Page ▪ 13

Four-Part Naming Convention

▪ Example 1: Trojan.Win32.Setiri.b

• Type of Malware: Trojan

• Target System Type: Win32 (32-bit Windows)

• Malware Family Name: Setiri

• Variant Number: b (second variant of the Setiri family)

▪ Interpretation:
This is a Trojan designed to run on 32-bit Windows, belonging to
the Setiri family, and is the second variant of this family.

Page ▪ 14

Four-Part Naming Convention

▪ Example 2: not-a-virus: Adware .Win32.Agent.z

• Type of Malware: Adware (not a traditional malicious program)

• Target System Type: Win32 (32-bit Windows)

• Malware Family Name: Agent

• Variant Number: z (26th variant of the Agent family)

▪ Interpretation:
This is an Adware program (not a traditional virus or Trojan) designed to run
on 32-bit Windows, belonging to the Agent family, and is the 26th variant of
this family.

Page ▪ 15

Real-world Case Study

Page ▪ 16

0cddd8c2084adb75689b5855a70cc4a8

(Trojan-Downloader. Powershell. Agent.a)

Page ▪ 17

0cddd8c2084adb75689b5855a70cc4a8

▪ Using Vim to Analyze the File

• Key Findings:

• The file is identified as a PowerShell program.

• The presence of "Hidden" indicates it runs in hidden mode.

• The program downloads an EXE file from a website, saves it in the temporary
folder, and changes its extension to .pif before execution.

▪ Suspicious Behaviors:

• Hidden execution.

• Downloading and modifying file extensions.

▪ Conclusion: These behaviors are highly suspicious and not typical of normal
programs, indicating it is likely malicious.

Page ▪ 18

44dcace0cfa9c0f6be1965841bc11410

(Downloader. JS. Agent.a)

Page ▪ 19

▪ Key Findings:

1.The presence of var indicates it is a JavaScript script.

2.A URL is found in the third line, but it is obfuscated:

1. Characters like http, com, and exe are separated by angle brackets (< >).

3.Similar obfuscation is observed in the fourth line.

▪ Suspicious Behavior:

• Obfuscation of URLs is not typical in legitimate programs.

• This strongly suggests the script is malicious.

Page ▪ 20

▪ Additional Steps for Confirmation:

1.Download and analyze the program from the obfuscated URL.

2.If the downloaded program is confirmed as malicious:

1. Blacklist the URL.

2. Blacklist the downloaded program.

▪ Why This Matters:

• Ensures a complete analysis process.

• Prevents further harm by blocking all related malicious components.

Page ▪ 21

▪ Classification Using Four-Part Naming Convention

– Four-Part Naming Structure:

1. Type of Malware: Trojan-Downloader (downloads additional malicious files).

2. Target System Type: JS (JavaScript).

3. Malware Family Name: Agent (family name assigned by the analyst).

4. Variant Number: a (first variant of this family).

– Final Classification:
Trojan-Downloader.JS.Agent.a

Page ▪ 22

84f1fa3c698915b91257706d1e4e3f0e
(Trojan.BAT.Agent.a)

Page ▪ 23

84f1fa3c698915b91257706d1e4e3f0e

▪ Key Findings:

1.The presence of echo off indicates it is a BAT (Batch) program.

2.The script is poorly written and heavily obfuscated, making it difficult to
understand its purpose.

3.Obfuscation is a common technique used by malicious programs to evade
detection.

▪ Conclusion: The script's obfuscation and lack of clear functionality strongly
suggest it is malicious.

Page ▪ 24

s

9b2293323610ccb2af33f977cb21f45c
(Trojan.JS.Agent.b)

Page ▪ 25

b5b98837ede4701a98f1467ab53160fb
(Trojan.JS.Agent.c)

Page ▪ 26

▪ Key Findings:

1.The code is clear and readable, making it easy to analyze.

2.The program is designed to redirect user traffic:

1. If the user attempts to access Google or Bing, the program redirects them
to 127.0.0.1 (localhost).

3.This behavior blocks normal access to these search engines.

▪ Conclusion: The program’s intentional redirection of user traffic is a clear
indicator of malicious behavior.

Page ▪ 27

bc70dba947cd5df9fd750353da3faed7
(Trojan.VBS.Agent.a)

Page ▪ 28

dbfcc7ffadee586e24f8247387b10d6e
(Trojan.JS.Agent.b)

Page ▪ 29

dee2decebaf53fead3714cfa6e862378
(Trojan.JS.Agent.c)

Page ▪ 30

4298F9DDA63C3C1B17FEF433C082107A
(Trojan.Win32.Agent.b)

Page ▪ 31

Load 4298F9DDA63C3C1B17FEF433C082107A into IDA

Here, we can observe that after obtaining its own module
handle, the program assigns the return value (stored in eax) to
an address, followed by a call. Let’s follow this call to see what it
does

Page ▪ 32

4298F9DDA63C3C1B17FEF433C082107A

First, let’s jump into the
first call to examine its content

Page ▪ 33

4298F9DDA63C3C1B17FEF433C082107A

As we can see, the purpose of this call is to allocate memory space
using the VirtualAlloc function. It is reasonable to believe that the
decrypted code will likely be stored here.

Page ▪ 34

4298F9DDA63C3C1B17FEF433C082107A

Returning to the previous level, let’s examine the content of the
second call

Page ▪ 35

4298F9DDA63C3C1B17FEF433C082107A

Here, we can see that operations such as and, not, and xor are
used for decryption. This is something that should not appear in
a normal program, so we can directly flag it as
malicious: Trojan.Win32.Agent.c.

In fact, this is a self-protection
mechanism used by viruses, known
as obfuscation, or it can also be
understood as a "shell" written by
the virus author for their malicious
program.

Page ▪ 36

Packed and Obfuscated Malware

• Malware writers often use packing or obfuscation to make their

files more difficult to detect or analyze.

• Obfuscated programs are ones whose execution the malware

author has attempted to hide.

• Packed programs are a subset of obfuscated programs in which the

malicious program is compressed and cannot be analyzed.

• Both techniques will severely limit your attempts to statically analyze

the malware.

Page ▪ 37

Packed and Obfuscated Malware

Page ▪ 38

Packers and Cryptos

Page ▪ 39

4fafbfd2e560778f11beb8f736e80bb1
(Trojan.Win32.Agent.b)

Page ▪ 40

4fafbfd2e560778f11beb8f736e80bb1

IDA jump to 0x00613B50, which is the
location of the main function. This is
where the actual code of the sample is
executed and is the focus of our analysis.

Page ▪ 41

In this main function, we primarily analyze the call instructions. For
example, let’s look at the call located at 0x00613BAD.

Page ▪ 42

▪ In this code, we can see many instances of single characters being moved into
memory. As mentioned earlier, this is highly suspicious.

Page ▪ 43 Continuing further, there is another call at 0x006E824A

Page ▪ 44

4fafbfd2e560778f11beb8f736e80bb1

Starting from 0x0067DF63, this is actually a decryption process. Why do
we say that? First, at 0x0067DF68, there is a mov assignment statement,
which assigns the content at address 0x0046B370 to ecx. Let’s take a
look at the content at this address

Page ▪ 45

4fafbfd2e560778f11beb8f736e80bb1

As you can see, this is a bunch of garbled data, likely encrypted.

Page ▪ 46

4fafbfd2e560778f11beb8f736e80bb1

Following this, there is a series of operations, including add (addition)
and xor (exclusive OR). The xor operation, in particular, is a common
decryption technique often used by malicious programs. From the
final inc (increment) and cmp (compare) operations, we can deduce
that ebx holds the number of binary codes to be decrypted, which is 0x67D in
this case.

Page ▪ 47

Dynamic Analysis

Page ▪ 48

Dynamic Analysis

▪ Dynamic analysis is the process of executing malware in a monitored

environment to observe its behaviors.

Page ▪ 49

dd66bcf26c50c12f2d1036ada8cc8c14
(Trojan-Ransom.Win32.Zerber.a)

Page ▪ 50

In fact, for EXE programs, in most cases, it is not possible to perform rapid
analysis using only static analysis.

Often, either more analysis tools are required, or the program is directly
executed in a virtual machine.

Here, I consider running the program in a virtual machine and observing the
results as a method for rapid analysis.

After all, the goal is simply to determine whether the sample is malicious or
benign. Therefore, as long as the sample does not employ anti-virtual
machine techniques, this approach can quickly yield a verdict on whether the
sample is malicious or benign.

Page ▪ 51

Page ▪ 52

Page ▪ 53

Source Code of myhack.dll

Page ▪ 54

Revisit Lab0

Page ▪ 55

Dynamic analysis myhack.dll with Ollydbg

Page ▪ 56

Go to ”Events” → select “Break on new module (DLL)”

Page ▪ 57

Attach to a process

Page ▪ 58

Attach to a process (Notepad.exe)

Page ▪ 59

Inject Dll

Page ▪ 60

Page ▪ 61

Page ▪ 62

Page ▪ 63

Q & A

	Slide 1
	Slide 2
	Slide 3: Fingerprinting the Malware -- Cryptographic Hash
	Slide 4: Fingerprinting the Malware
	Slide 5: Tools and Python code
	Slide 6: Strings
	Slide 7: Static analysis (myhack.dll)
	Slide 8: Static analysis (myhack.dll)
	Slide 9: strings in Linux and flare-floss
	Slide 10
	Slide 11: Introduction to Four-Part Naming Convention
	Slide 12: Four-Part Naming Convention
	Slide 13: Four-Part Naming Convention
	Slide 14: Four-Part Naming Convention
	Slide 15
	Slide 16
	Slide 17: 0cddd8c2084adb75689b5855a70cc4a8
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: 84f1fa3c698915b91257706d1e4e3f0e
	Slide 24: s
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Load 4298F9DDA63C3C1B17FEF433C082107A into IDA
	Slide 32: 4298F9DDA63C3C1B17FEF433C082107A
	Slide 33: 4298F9DDA63C3C1B17FEF433C082107A
	Slide 34: 4298F9DDA63C3C1B17FEF433C082107A
	Slide 35: 4298F9DDA63C3C1B17FEF433C082107A
	Slide 36: Packed and Obfuscated Malware
	Slide 37: Packed and Obfuscated Malware
	Slide 38: Packers and Cryptos
	Slide 39
	Slide 40: 4fafbfd2e560778f11beb8f736e80bb1
	Slide 41
	Slide 42
	Slide 43
	Slide 44: 4fafbfd2e560778f11beb8f736e80bb1
	Slide 45: 4fafbfd2e560778f11beb8f736e80bb1
	Slide 46: 4fafbfd2e560778f11beb8f736e80bb1
	Slide 47
	Slide 48: Dynamic Analysis
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Source Code of myhack.dll
	Slide 54: Revisit Lab0
	Slide 55: Dynamic analysis myhack.dll with Ollydbg
	Slide 56: Go to ”Events”  select “Break on new module (DLL)”
	Slide 57: Attach to a process
	Slide 58: Attach to a process (Notepad.exe)
	Slide 59: Inject Dll
	Slide 60
	Slide 61
	Slide 62
	Slide 63

