
CSC 471 Modern Malware Analysis

IA-32 Registers & Byte Ordering

Si Chen (schen@wcupa.edu)

Class3

Page ▪ 2

Review

Page ▪ 3

Screenshots

Page ▪ 4

Screenshots

Page ▪ 5

DLL Injection

Notepad.exe Process

kernel32.dll

user32.dll

gdi32.dll

shell32.dll

advapi32.dll

ntdll32.dll

myhack.dll

myhack.dll

.text

.data

.rsrc

DLL Injection

Page ▪ 6

DLL Injection

Page ▪ 7

DllMain()

Notepad.exe Process

kernel32.dll

user32.dll

gdi32.dll

shell32.dll

advapi32.dll

ntdll32.dll

myhack.dll myhack.dll

.text

.data

.rsrc

DLL Injection

execute DllMain()
in myhack.dll

Page ▪ 8

Source Code of myhack.dll

Page ▪ 9

Portable Executable (PE) file

▪ A Portable Executable (PE) file is the standard binary file format for an

Executable (.exe) or DLL under Windows NT, Windows 95, and Win32.

Page ▪ 10

IA-32 Register

Page ▪ 11

Intel IA-32 Processor

▪ Intel uses IA-32 to refer to Pentium processor family, in order to

distinguish them from their 64-bit architectures.

Page ▪ 12

Register Set

▪ There are three types of registers:

– general-purpose data registers,

– segment registers,

– status and control registers.

Page ▪ 13

General-purpose Registers

▪ The eight 32-bit general-purpose data registers are used to hold

operands for logical and arithmetic operations, operands for address

calculations and memory pointers

4 Bytes

Page ▪ 14

Other uses…

– EAX—Accumulator for operands and results data.

– EBX—Pointer to data in the DS segment.

– ECX—Counter for string and loop operations.

– EDX—I/O pointer.

1. We use these four registers when we perform arithmetic

operations (ADD, SUB, XOR, OR) -- store constant or variable’s

value.

2. Some assembly operations (MUL, DIV, LODS) directly operate

these register and altered the value when finished.

3. ECX is used for loop count → decrease 1 after each loop

4. EAX is used for storing the return value of a function (Win32 API)

Page ▪ 15

Other uses…

▪ ESI—Pointer to data in the segment pointed to by the DS register; source

pointer for string operations.

▪ EDI—Pointer to data (or destination) in the segment pointed to by the ES

register; destination pointer for string operations.

▪ EBP—Pointer to data on the stack.

▪ ESP—Stack pointer.

PUSH, POP, CALL, RET

Page ▪ 16

Segment Registers

▪ There are six segment registers that hold 16-bit segment selectors. A

segment selector is a special pointer that identifies a segment in memory.

– CS: code segment register

– SS: stack segment register

– DS, ES, FS, GS: data segment registers

Page ▪ 17

Status and Control Registers

The 32-bit EFLAGS register contains a group of status flags, a control

flag, and a group of system flags.

JCC

Page ▪ 18

Status and Control Registers

Change to ‘1’ if:

• Signed integer overflow
• Change in MSB (Most Significant Bit)

Change to ‘1’ if:

• Calculation result is 0

Change to ‘1’ if:

• unsigned integer overflow

Page ▪ 19

Status and Control Registers

EIP Register (Instruction Pointer)

The EIP register (or instruction pointer) can also be called "program

counter."

It contains the offset in the current code segment for the next instruction to

be executed.

It is advanced from one instruction boundary to the next in straight-line code

or it is moved ahead or backwards by a number of instructions when

executing JMP, Jcc, CALL, RET, and IRET instructions.

Page ▪ 20

Byte Order

Page ▪ 21

Little endian

▪ IA-32 processors use "little endian" as their byte order. This means that

the bytes of a word are numbered starting from the least significant byte

and that the least significant bit starts of a word starts in the least

significant byte.

Page ▪ 22

Byte Order

Page ▪ 23

LittleEndian.cpp

Page ▪ 24

X86 ASM

Page ▪ 25

MOV

▪ Move reg/mem value to reg/mem

– mov A, B is "Move B to A" (A=B)

– Same data size

mov eax, 0x1337

mov bx, ax

mov [esp+4], bl

Page ▪ 26

MOVZX / MOVSX

▪ From small register to large register

▪ Zero-extend (MOVZX) / sign-extend (MOVSX)

▪ Example: movzx ebx, al

Page ▪ 27

More About Memory Access

▪ mov ebx, [esp + eax * 4] Intel

▪ mov (%esp, %eax, 4), %ebx AT&T

▪ mov BYTE [eax], 0x0f

You must indicate the data size: BYTE/WORD/DWORD

Page ▪ 28

ADD / SUB

▪ ADD / SUB

▪ Normallly "reg += reg" or "reg += imm"

▪ Data size should be equal

– ADD eax, ebx

– sub eax, 123

– sub eax, BL ; Illegal

Page ▪ 29

INC / DEC

▪ inc, dec — Increment, Decrement

▪ The inc instruction increments the contents of its operand by one.

The dec instruction decrements the contents of its operand by one.

▪ Syntax

inc <reg>

inc <mem>

dec <reg>

dec <mem>

▪ Examples

DEC EAX — subtract one from the contents of EAX.

INC DWORD PTR [var] — add one to the 32-bit integer stored at

location var

Page ▪ 30

SHL / SHR / SAR

▪ Shift logical left / right

▪ Shift arithmetic right

▪ Common usage: SHL eax, 2 (when calculate memory address)

Page ▪ 31

Jump

▪ Unconditional jump: jmp

▪ Conditional jump: je/jne

and ja/jae/jb/jbe/jg/jge/jl/jle ...

▪ Sometime with ”cmp A, B” -- compare these two values and set eflags

▪ Conditional jump is decided by some of the eflags bits.

Page ▪ 32

Jump

▪ ja/jae/jb/jbe are unsigned comparison

▪ jg/jge/jl/jle are signed comparison

Page ▪ 33

CMP

▪ cmp — Compare

▪ Compare the values of the two specified operands, setting the condition

codes in the machine status word appropriately. This instruction is

equivalent to the sub instruction, except the result of the subtraction is

discarded instead of replacing the first operand. Syntax

cmp <reg>,<reg>

cmp <reg>,<mem>

cmp <mem>,<reg>

cmp <reg>,<con>

▪ Example

cmp DWORD PTR [var], 10

jeq loop

▪ If the 4 bytes stored at location var are equal to the 4-byte integer

constant 10, jump to the location labeled loop.

Page ▪ 34

Q & A

	Slide 1
	Slide 2
	Slide 3: Screenshots
	Slide 4: Screenshots
	Slide 5: DLL Injection
	Slide 6: DLL Injection
	Slide 7: DllMain()
	Slide 8: Source Code of myhack.dll
	Slide 9: Portable Executable (PE) file
	Slide 10
	Slide 11: Intel IA-32 Processor
	Slide 12: Register Set
	Slide 13: General-purpose Registers
	Slide 14: Other uses…
	Slide 15: Other uses…
	Slide 16: Segment Registers
	Slide 17: Status and Control Registers
	Slide 18: Status and Control Registers
	Slide 19: Status and Control Registers
	Slide 20
	Slide 21: Little endian
	Slide 22: Byte Order
	Slide 23: LittleEndian.cpp
	Slide 24
	Slide 25: MOV
	Slide 26: MOVZX / MOVSX
	Slide 27: More About Memory Access
	Slide 28: ADD / SUB
	Slide 29: INC / DEC
	Slide 30: SHL / SHR / SAR
	Slide 31: Jump
	Slide 32: Jump
	Slide 33: CMP
	Slide 34

