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Screenshots
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Screenshots
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DLL Injection
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DLL Injection
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DllMain()
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DLL Injection

execute DllMain() 
in myhack.dll
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Source Code of myhack.dll
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Portable Executable (PE) file

▪ A Portable Executable (PE) file is the standard binary file format for an 

Executable (.exe) or DLL under Windows NT, Windows 95, and Win32.
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IA-32 Register
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Intel IA-32 Processor

▪ Intel uses IA-32 to refer to Pentium processor family, in order to 

distinguish them from their 64-bit architectures.
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Register Set

▪ There are three types of registers: 

– general-purpose data registers, 

– segment registers,

– status and control registers. 
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General-purpose Registers

▪ The eight 32-bit general-purpose data registers are used to hold 

operands for logical and arithmetic operations, operands for address 

calculations and memory pointers

4 Bytes
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Other uses…

– EAX—Accumulator for operands and results data.

– EBX—Pointer to data in the DS segment.

– ECX—Counter for string and loop operations.

– EDX—I/O pointer.

1. We use these four registers when we perform arithmetic 

operations (ADD, SUB, XOR, OR) -- store constant or variable’s

value.

2. Some assembly operations (MUL, DIV, LODS) directly operate

these register and altered the value when finished.

3. ECX is used for loop count → decrease 1 after each loop

4. EAX is used for storing the return value of a function (Win32 API)
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Other uses…

▪ ESI—Pointer to data in the segment pointed to by the DS register; source 

pointer for string operations.

▪ EDI—Pointer to data (or destination) in the segment pointed to by the ES 

register; destination pointer for string operations.

▪ EBP—Pointer to data on the stack.

▪ ESP—Stack pointer.

PUSH, POP, CALL, RET
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Segment Registers

▪ There are six segment registers that hold 16-bit segment selectors. A 

segment selector is a special pointer that identifies a segment in memory.

– CS: code segment register

– SS: stack segment register

– DS, ES, FS, GS: data segment registers
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Status and Control Registers

The 32-bit EFLAGS register contains a group of status flags, a control 

flag, and a group of system flags. 

JCC



Page ▪ 18

Status and Control Registers

Change to ‘1’ if:

• Signed integer overflow
• Change in MSB (Most Significant Bit)

Change to ‘1’ if:

• Calculation result is 0

Change to ‘1’ if:

• unsigned integer overflow
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Status and Control Registers

EIP Register (Instruction Pointer)

The EIP register (or instruction pointer) can also be called "program 

counter." 

It contains the offset in the current code segment for the next instruction to 

be executed. 

It is advanced from one instruction boundary to the next in straight-line code 

or it is moved ahead or backwards by a number of instructions when 

executing JMP, Jcc, CALL, RET, and IRET instructions.
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Byte Order
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Little endian

▪ IA-32 processors use "little endian" as their byte order. This means that 

the bytes of a word are numbered starting from the least significant byte 

and that the least significant bit starts of a word starts in the least 

significant byte.
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Byte Order
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LittleEndian.cpp
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X86 ASM
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MOV

▪ Move reg/mem value to reg/mem

– mov A, B is "Move B to A" (A=B)

– Same data size

mov eax, 0x1337 

mov bx, ax 

mov [esp+4], bl
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MOVZX / MOVSX

▪ From small register to large register

▪ Zero-extend (MOVZX) / sign-extend (MOVSX)

▪ Example: movzx ebx, al
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More About Memory Access

▪ mov ebx, [esp + eax * 4] Intel

▪ mov (%esp, %eax, 4), %ebx AT&T

▪ mov BYTE [eax], 0x0f

You must indicate the data size: BYTE/WORD/DWORD
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ADD / SUB

▪ ADD / SUB

▪ Normallly "reg += reg" or "reg += imm"

▪ Data size should be equal

– ADD eax, ebx 

– sub eax, 123 

– sub eax, BL ; Illegal
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INC / DEC

▪ inc, dec — Increment, Decrement

▪ The inc instruction increments the contents of its operand by one. 

The dec instruction decrements the contents of its operand by one.

▪ Syntax

inc <reg>

inc <mem>

dec <reg>

dec <mem>

▪ Examples

DEC EAX — subtract one from the contents of EAX.

INC DWORD PTR [var] — add one to the 32-bit integer stored at 

location var
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SHL / SHR / SAR

▪ Shift logical left / right

▪ Shift arithmetic right

▪  Common usage: SHL eax, 2 (when calculate memory address)
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Jump

▪ Unconditional jump: jmp

▪ Conditional jump: je/jne

and ja/jae/jb/jbe/jg/jge/jl/jle ...

▪ Sometime with ”cmp A, B” -- compare these two values and set eflags

▪ Conditional jump is decided by some of the eflags bits.
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Jump

▪ ja/jae/jb/jbe are unsigned comparison

▪ jg/jge/jl/jle are signed comparison
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CMP

▪ cmp — Compare

▪ Compare the values of the two specified operands, setting the condition 

codes in the machine status word appropriately. This instruction is 

equivalent to the sub instruction, except the result of the subtraction is 

discarded instead of replacing the first operand. Syntax

cmp <reg>,<reg>

cmp <reg>,<mem>

cmp <mem>,<reg>

cmp <reg>,<con>

▪ Example

cmp DWORD PTR [var], 10

jeq loop

▪ If the 4 bytes stored at location var are equal to the 4-byte integer 

constant 10, jump to the location labeled loop.
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Q & A
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