CSC 471 Spring 2025 Lab 2

Dr. Si Chen

Stack and Stack Frame

The goals of this lab are to:
e Understand the concepts of Stack and Stack Frame.
e Navigate and analyze binary executables using OllyDbg.

e Understand the role of function calls, parameters, and return values in software
functionality:.

e Develop strategies for binary modification that achieve desired outcomes without in-
troducing errors or instability.

Introduction

This lab is inspired by a series of reverse engineering tutorials aimed at beginners, show-
casing the practical application of code analysis techniques. The tutorials, popular for their
approachable format and comprehensive coverage, serve as a valuable resource for those inter-
ested in delving into the realm of software reverse engineering. Through this lab, participants
will gain hands-on experience with binary manipulation, enhancing their understanding of
software internals. The primary focus is to apply learned concepts in a controlled envi-
ronment, reinforcing theoretical knowledge with practical skills. This approach not only
demystifies the underlying mechanics of executable files but also equips learners with the
tools necessary for effective problem-solving in the field of cybersecurity.

Background

The lab exercises are structured around a challenge involving a binary file, lab2.exe, that
presents a ”Nag screen” upon execution. The task is to remove this screen by modifying the
binary, using OllyDbg, a popular debugger for reverse engineering. This scenario mimics
real-world reverse engineering tasks, where understanding the software’s flow and manipulat-
ing its execution are essential skills. By engaging with this exercise, learners will navigate the
complexities of binary analysis, gaining insights into the software’s structure and behavior,
and the impact of assembly-level modifications.

CSC 471 Lab 2 - Page 2 of 5 02/13/2025

The lab2.exe for debugging is crafted in Visual Basic. Before diving into debugging, it’s
useful to grasp the features of Visual Basic files.

0.0.1 VB-Specific Engine

Visual Basic files leverage a VB-specific engine called MSVBVM50.DLL (Microsoft Visual
Basic Virtual Machine 5.0), also known as The Thunder Runtime Engine. For instance, to
display a message box, VB code necessitates calling the MisgBox function. Actually, the VB
editor genuinely invokes the rtcMsgBox function within MSVBVM50.DLL, which con-
sequently functions by calling the MessageBoxW function (Win32 APT) inside user32.dll
(this can also be directly invoked in VB code).

0.0.2 Native Code and P-Code

Based on the compilation options employed, VB files may be compiled into native code
(N-Code) and P-Code. Native code generally utilizes IA-32 instructions more decipherable
by debuggers, whereas P-Code is an interpreter language utilizing self-parsing instructions
(bytecode) through a virtual machine implemented by the VB engine. Accurate parsing of
VB’s P-Code necessitates analysis of the VB engine and emulation implementation.

0.0.3 Event Handlers

Visual Basic is extensively used for developing GUI programs, making its IDE interface ide-
ally suited for GUI programming. VB programs operate on an event-driven model employed
by the Windows operating system, meaning that user code does not exist in functions like
main() or WinMain(); instead, user code is found within various event handlers.

0.0.4 Undocumented Structures

VB utilizes various structures to store information (such as Dialog, Control, Form, Module,
Function, etc.) within the file. Since Microsoft has not officially disclosed these structures,
debugging VB files can become somewhat more challenging.

Objectives and Targets

Download 1ab2.exe to your Windows XP VM and run it to display a Nag screen, as shown
in Figure 1. Your task is to completely remove the Nag screen by modifying the binary
program using 011yDbg.

Experiment Setup

1. Start Windows XP in VirtualBox.

2. Inside Windows XP, download or copy lab2.exe to a folder, accessible via:

https://www.cs.wcupa.edu/schen/malware25/download/lab2.exe '

3. Open lab2.exe with 011ydbg.

https://www.cs.wcupa.edu/schen/malware25/download/lab2.exe

CSC 471 Lab 2 - Page 3 of 5 02/13/2025

Nag Screen

‘c) Get rid of all Nags and Find the right registration code !

p)
oK | Cancel

Figure 1: Nag Screen of lab2

4. Review the following questions in ”Lab Exercise” and include your answers in your
report.

Lab Exercise: Remove the Nag screen

Step 1: Analysis and Patching Process

The goal of this exercise is to eliminate the Nag screen by modifying the program’s execution
flow. This involves identifying the specific function call that triggers the Nag screen, which,
through analysis with 011yDbg, is found to be a call to the rtcMsgBox function from the
Visual Basic runtime library, MSVBVM50.

Step 2: Identifying and Modifying the Function Call

Utilizing 011yDbg’s ” Search for - All intermodular calls” feature helps locate the rtcMsgBox
function calls. Setting breakpoints on these calls allows us to pause execution right at the
critical moment before the Nag screen is displayed, offering a precise location for modification.

Upon analyzing the call at 0x402CFE, Dr. Chen decides to modify the "CALL XXXX”
instruction to "ADD ESP,14” effectively skipping over the call to the Nag screen function.
To maintain the integrity of the code flow, two "NOP” instructions are added to fill in the
gap left by the shortened instruction. This strategic patch removes the Nag screen without
altering the program’s core functionality.

However, this modification caused errors because rtcMsgBox () needs to return a value of 1
to indicate successful display, which his modification did not account for.

Question: Which CPU register is used to store the return value (1) of the function
rtcMsgBox ()7 Why?

Dr. Chen found another way to "hack” this program by changing the instruction at 0x402C17
from "PUSH EBP” to "RETN 47, successfully removing the Nag screen.

Question: What is the meaning of "PUSH EBP, MOV EBP, ESP"? '

CSC 471

Lab 2 - Page 4 of 5

02/13,/2025

00402CB5S

00402CBB
080402CBE
080402CCH
080402CCB
00402CD8
00402CD2
00402CD7
00402CD8
00402CDB
00402CDE
00402CE1
00402CE4L
00402CE7
00402CE8
00402CEB
00402CEC
B80402CEF
00402CF0
00402CF3
00402CF4
00402CF9
00402CFA

B0402CFE

00402009
00402D0C
00402012
00402018
00402D1D
00402020
00402021
00402024
00402025
00402027
00402D2C
00402D2F
00402032
00402039
00402D43
00402D44
00402D4A
00402D4B
anLAoNsa

. 8D95 ICFFFFFF
. 8D4D CC

. C745 84 781FAl
. 899D ICFFFFFF
. E8 SCEAFFFF

. 6A OA

. B9 04000280

. o8

. 50
. E8 21E4FFFF

LEA EDX,DWORD PTR SS:[EBP-841
LEA ECKX,DWORD PTR SS:[EBP-341

MOV DHORD PTR SS:[EBP-TCI, lab3 00401F78 UNICODE “Nag Screen ™

HOV DHORD PTR SS:[EBP-841

CALL <JHP.ZHSVBVH50. vbaVarCoDv)
PUSH @A

HOV ECK,80020004

POP ERAX

HOV DHORD PTR $$:[EBP-6C],ECK
HOV DHORD PTR $$:[EBP-741,ERX
HOV DHORD PTR S$S:[EBP-641,ERX
LEA EAX,DWORD PTR §S:[EBP-741

HllV DH(]RD PTR S:[EBP-5C1,ECK

LEH EHX DHORD PTR $S:[EBP-641
PUSH_EAX

LEA EAX,DHORD PTR SS:[EBP-341
PUSH_EAX

LER Em(DHORD PTR $S:[EBP-241
CHLL (JHP &HSVBVMSO. __vbaliVar>

. 8985 GAFFFFFF
. 89BD SCFFFFFF
. E8 @9EAFFFF

. 8D45 8C

1)

. 8D45 9C

. 00

. 6A 02

. E8 ESEJFFFF

. 83C4 oC

. 8D45 BC

. C745 84 01000
. C785 ICFFFFFF
. 8D85 7CFFFFFF

. 58
. E8 BEESFFFF
LE-950a

. 50 EAX
. 8D45 AC LEH EAX,DHORD PTR $S:[EBP-541
PLISH FOY
. E8 1DEAFFFF | CALL <JHP.&HSVBVM5@.#595>
5 5 =4]
8D4D BC LEA ECKX,DWORD PTR SS:[EBP-441

HOV DHORD PTR $$:[EBP-9CI,ERX
HOV DHORD PTR S$S:[EBP-R41,EDT
CALL <JHP.8HSVBVH50. _vbaVarHove>
LEA EAX,DHORD PTR $§:TEBP-741

PUSH_EAX

LEA EAX,DWORD PTR $S:[EBP-641
PUSH EAX

PUSH 2

CALL <JHP.ZHSVBVHSO.__vbaFreeVarList>
ADD ESP,0C

LEA EAX,DHORD PTR SS:[EBP-441
MOV DHORD PTR SS:[EBP-7C1,1
HOV DHORD PTR SS:[EBP-841.8003
PUSH

LEA EAX,DHORD PTR SS:[EBP-841

PUSH EAX
CALL <JHP.&HSVBYHSO. vbaVarTstEa>
TEQT av 0w

Figure 2: Disassembled code showing the call to rtcMsgBox at 0x402CFE

00402CE7
00402CE8
00402CEB
00402CEC
00402CEF
00402CF0
00402CF3
80402CF4
00402CF9
00402CFA

. o0

. 8D45 9C

)

. 8D4&5 CC

. b0

. 8D45 DC

. 50

. E8 21E4FFFF

. 50

. 8D45 AC
50

PUSH _EAX
LEA EAX,DWORD PTR $S:[EBP-641
USH _EAX
LEH EHK.DHORD PTR $S:[EBP-341

LEH EH)(DHORD PTR $S:[EBP-241

PUSH EA¥

CRLL <JHP 8HSVBVHSO. __vbaliVar>
EAX

LEH EAX,DHORD PTR $S:[EBP-541

PlUSH _EAY

0040 D
080402CFE
080402001
00402002

00402009
00402D0C
00402012
00402018
00402010
00402020
00402021
00402D24
00402D25
00402027
00402D2C
00402D2F
00402032
00402039
00402D43
00402D44
00402D4A
00402D4B
00402050
00402053
080402D55
00402D50
00402050
ARLAONA?

83C4 14
90
90

. 8D4D BC

. 8985 64FFFFFF
. 89BD SCFFFFFF
. E8 B9ELFFFF

. 8D45 8C

. 50

. 8D45 9C

. 50

. 6R 82

. E8 EBE3FFFF

. C745 84 01000
. C785 7CFFFFFF
. 50

. 8D85 7CFFFFFF

. E8 BEESFFFF
- 66:85C0

150

5 E8 ﬂEEaFFFF

o 68 9820‘000
FR 13

Figure 3: Modified disassembled code of lab2

ADD ESP,14
NOP
NOP

, :[EBP-R&1
LEA ECK,DWORD PTR §S:[EBP-441
HOV DWORD PTR $S:[EBP-9C1,ERX
MOV DHORD PTR S$S:[EBP-R41,EDI
CALL <JHP.&HSVBYHSO. vbaVarHove>
LEA EAX,DHORD PTR SS:[EBP-741
PUSH EAX

LEA EAX,DHORD PTR SS:[EBP-641
PUSH EAX

Pl
CALL <JHP.ZHSVBVH5@. vbaFreeVarList>
ADD ESP,8C

LEA EAX,DWORD PTR §S:[EBP-441

HOV DWORD PTR $$:[EBP-7C1,1

MOV DHORD PTR S$S:[EBP-841,8003

PUSH EAX

LEA EAX,DHORD PTR SS:[EBP-841

PUSH EA:

CALL <JHP.&HSVBYHSO. vbaVarTstEa>
TEST AX,AX

JNZ SHORT 1ab3.00402D5A

CALL <JHP.&HSVBYNS5@. vbaEnd>

HOV DWORD PTR $S:[EBP-41,EST
PUSH lab3.00402098

JIMP SHNRT 1ah2 ARLZAPNTT

Question: Please explain why changing the instruction at 0x402C17 from "PUSH EBP”
to "RETN 4" removes the Nag screen.

Bonus: Finding the Registration Code (extra 2 points)

In this exercise, you will explore the process of identifying and validating a registration code
for lab2.exe using OllyDbg. The goal is to understand how conditional checks and string
comparisons are performed in assembly language and how to manipulate these checks to
discover the correct registration code.

CSC 471 Lab 2 - Page 5 of 5 02/13/2025

OllyDbg - lab3.exe - [CPL - main thread, module lab3]
[€] Fie View Debug Plugins Options Window Help

SIx] [0 53+ $I1 3] > wlelsalwalcl/ R a[e]e]s] EE]

00402009 | . SF POP EDI]
00402C0A0 ([. SE POP ESL

90402C0B || . 64:890D 80000¢ HOV DHORD PTR FS:[01,ECK

080402C12|(. SB POP EBX

080402C13|(. C9 LEAVE

00402C14 L. C2 0400 RETN 4

080402C17 C2 0400 RETN &

00402¢10| . 83EC OC SUB ESP,8C

90402C1D| . 68 66104800 | PUSH <JHP.ZHSVBVHL@. vbaExceptHandler>| SE handler installation

00402022 | . 64:A1 9BBOBOB(HOY EAX,DHORD PTR FS:101
. 50 PUSH EAX

080402C29 | . 64:8925 00000¢ HOV DHORD PTR FS:101,ESP

00402C30| . 81EC 98000000 SUB ESP,98

00402C36| . 8B4S 08 MOV EAX,DWORD PTR SS:[EBP+81
00402C39 | . 8365 08 FE AND DWORD PTR SS:[EBP+81,FFFFFFFE
90402C3D| . 83E@ 01 AND ERAX,1

00402C40 | . C745 F8 18104¢HOV DHORD PTR S$S:[EBP-81,1ab3.00401018
080402C47| . 53 PUSH EBX

80402C48 | . 8945 FC MOV DHORD PTR SS:[EBP-41,EAX
00402C4B| . 8B45 08 MOV EAX,DWORD PTR SS:[EBP-81
B80402C4E| . 56 PUSH ESI

080402C4F | . 57 PUSH EDI

00402050 . 8B@8 HOV ECX,DWORD PTR DS:[EAX]
00402052 . 8965 F& HOV DWORD PTR S$S:[EBP-CI,ESP
080402C55| . 50 PUSH EAX

80402056 | . FF51 04 CALL DHORD PTR DS:[ECK+41
080402C59 | . 60 08 PUSH 8

080402C5B| . 33F6 XOR ESI,EST

080402C5D| . 5B POP EBX

90402C5E | . 89BS TCFFFFFF | HOV DHORD PTR SS:[EBP-841,EST
90402C64 | . 8D95 7CFFFFFF|LEA EDX,DHORD PTR S$S:[EBP-841
80402C60 | . 8D&D AC LEA ECX,DHORD PTR SS:[EBP-541

80402C6D | . 8975 DC MOV DHORD PTR SS:[EBP-241,EST
00402C70| . 8975 CC MOV DHORD PTR SS:[EBP-341,EST
00402C73| . 8975 BC MOV DHORD PTR SS:[EBP-441,EST
00402C76| . 8975 AC MOV DHORD PTR SS:[EBP-541,EST
00402C79| . 8975 9C HOV DWORD PTR $$:[EBP-641,EST
00402C7C . 8975 8C HOV DWORD PTR SS:[EBP-741,ESI
ARLACTE R9RS SCEEEECE MOV NUORD PTR SS-TERP-A41 EST]

Figure 4: Another method to modify the disassembled code of lab2

The program uses a string comparison function to compare the entered registration code
against the correct one. This function is typically named __vbaStrCmp in Visual Basic
compiled programs. Locate the call to the __vbaStrCmp function related to the registration
code check. Think the following question — what are the two strings being compared by
this function? Upon finding the string comparison, you’ll notice the hardcoded correct
registration code in the vicinity of the comparison function call.

Question: What is the hardcoded registration code found near the __vbaStrCmp function
call? Hint: Look for a string that is compared against the user input.

Hint

Check the lecture slides and video — Class 5, 6 Stack and Stack Frame, and Class3 & 4 for
[A32 CPU register and X86 ASM basics.

Submission

e The lab due date is available on our course website. Late submissions will not be
accepted.

e Submit your assignment directly to D2L.

e Include a detailed project report in PDF format describing your process, including
screenshots of the final result.

e No copy or cheating is tolerated. If your work is based on others’; give clear attribution,
or you will fail this course.

	VB-Specific Engine
	Native Code and P-Code
	Event Handlers
	Undocumented Structures

