
CSC 471 Modern Malware Analysis
Conficker Worm

Si Chen (schen@wcupa.edu)

Class20

Worm vs a virus

1. Self propagates across the network

2. Exploits security or policy flaws in
widely used services

3. Less mature defense today

+

AttackerTarget
Discovery

Carrier

Activation

Payload

OVERVIEW

Page § 4

CVE-2008-4250 (MS08-067)
&

Conficker Worm

Page § 5

Page § 6

Preface

§ In October 2008, Microsoft urgently released a critical security patch to fix
the threat posed by the CVE-2008-4250 vulnerability (internally known as
MS08-067). Since this patch was not released on Microsoft's regular
Patch Tuesday, it is called an Out-of-Band Update.

Page § 7

Preface

§ The CVE-2008-4250 vulnerability that broke out at that time and the
subsequent Conficker worm variants were a very serious security event
that lasted for several months. Dustin Childs, the then Security Program
Manager (SPM) at Microsoft Security Response Center (MSRC), recalled:

"At the time, I was personally surprised to see Microsoft's various departments
working together to deal with this vulnerability. Our Microsoft headquarters,
Indian and European branch teams were almost working around the clock. One
thing that impressed me was that when we held the first Security Incident
Response Process (SSIRP) meeting for the MS08-067 vulnerability, there were 15
people in the conference room, and many experts joined the meeting via
telephone conference lines. After the person in charge explained the basic
situation of the vulnerability, the atmosphere in the meeting suddenly fell into a
dead silence, because we knew that a large number of worm viruses would
accompany this vulnerability.

Page § 8

Preface

From that moment on, we understood that the battle had begun. People who have
not experienced such a large-scale event may not have the same experience. The
people in the room were all information security experts, and they had personally
dealt with super worm viruses such as Melissa, Nimda, Slammer, Sasser, and Code
Red. Another interesting thing is that, due to the priority of emergency response, I
only needed to explain the situation of the MS08-067 vulnerability, and I could
immediately coordinate and allocate staff to participate in the response process. In
response to this vulnerability, all Microsoft employees worked around the clock for
17 days..."

This demonstrates the severity of this vulnerability. Therefore, we have
chosen this very unique and significant vulnerability for study.

Page § 9

Introduction

§ Brief overview of CVE-2008-4250 vulnerability
§ Connection between vulnerability and differences between "." and ".." in

command-line operations

Page § 10

Brief overview of CVE-2008-4250 vulnerability

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4250

Page § 11

Differences between "." and ".."

§ Before we delve into the CVE-2008-4250 vulnerability, I need to introduce
some basic knowledge, as the cause of this vulnerability is related to the
differences between "." and ".." in command-line operations, and how the
program handling these two symbols.

§ To illustrate this issue, I created a folder named "a" in the root directory of
my C drive, and then created a folder named "b" inside "a" folder, which
contains a "c" folder, and finally a "d" folder, as shown in the following
hierarchy:

Page § 12

Differences between "." and ".."

§ Then we open the command-line window and go to the root directory of
the C drive. Normally, if we want to enter the "a" directory, we can simply
enter the following command:

§ If we want to enter multiple directories, we can enter the following
command:

Page § 13

Differences between "." and ".."

§ And if we want to go back to the previous directory, we can enter:

§ If we enter a dot, it means we are still in the current directory and do
nothing:

§ That is, a dot represents the current directory, and two dots represent the
previous directory. We can also use the following command to go directly
back to the root directory:

Page § 14

Differences between "." and ".."

§ If we want to enter multiple directories at this time, besides the method
mentioned above, there are actually several other ways, such as if we
only want to enter the "a" directory, we can also write like this:

§ Or write like this:

§ Since we can also enter the "a" directory like this:

Page § 15

Differences between "." and ".."

§ Therefore, before executing our command, the command line can actually
perform a simplification operation, which is to convert ".a" or ".a" to "a" or
"a" form, and remove the "." here.

§ So much for the use of a dot. Next, there are two dots. For example, if we
are in the current "a" directory and enter the following command:

§ It can be seen that these two commands do not change the current
directory structure. This is because the "cd" command will help us enter
the "b" directory, and the two dots mean to return to the previous level
directory, which is the "a" directory, and then it is still the current directory.
Separated writing is like this:

Page § 16

Differences between "." and ".."

§ That is to say, assuming that the directory hierarchy structure is not
wrong, the writing method like "b.." or "b.." can be directly omitted. Then
let's take a look at a slightly more complicated writing method. Still in the
current "a" directory, enter the following command:

§ The meaning of this command is to first enter the "b" directory in the
current "a" directory, then return to the previous directory, that is, return to
the "a" directory, and then return to the root directory of the C drive, and
finally enter the "d" directory. According to the conclusion we just
obtained, the writing method like "b.." can be directly omitted, so the path
that the above command wants to enter is actually equivalent to "..abcd".

So, these are the basic knowledge we
need to know about the dot symbol.

Page § 17

Programming the idea of simplifying directory structure

§ Regardless of whether our command-line tool simplifies directories before
executing our commands, one of the sub-functions in the
NetpwPathCanonicalize function in our netapi32.dll has this feature. So
here we need to implement two functions, one is the processing method
for a dot. This situation is the simplest. Just remove the "." directly.
However, our NetpwPathCanonicalize function does not use deleting
functions to simplify strings, but uses the wcscpy() function to copy the
contents of the left pointer to the right pointer, as shown in the following
figure:

Page § 18

Programming the idea of simplifying directory structure

§ Since the case with two dots also needs to remove the directory name in
front of these two dots, in addition to the basic need for two pointers p1
and p2 to mark the addresses of the slashes on both sides of the dot, a
pointer p3 is also needed to mark the position of the slash in front of the
directory name to be removed, and then we can use the wcscpy() function
to copy the contents pointed to by p1 to the position of p3.

Page § 19

Conclusion

§ The content we discussed in this course seems very simple, but even for
such programming problems, a Microsoft engineer's negligence caused a
serious vulnerability. In the next part, we will focus on the static analysis of
this problem. But the premise is that you must thoroughly understand the
content of this course.

§ After all, the vulnerability research is a one-step-by-step process, and only
by mastering these basics can we help us with our research and analysis
in the future.

Page § 20

Static Analysis

§ The CVE-2008-4250 vulnerability we are studying this time is still in the
NetpwPathCanonicalize function of the netapi32.dll file, but the location
has changed and the idea is different.

§ Its cause is due to a developer's negligence and lack of rigor in the string
movement operation, which did not strictly check the out-of-bounds
situation.

Page § 21

Static Analysis

§ The function we are researching this time is the same as before, which is
the path character function used to splice and normalize path characters
in the NetpwPathCanonicalize function, and the call location of this
function is at 0x5FDDA15B in the NetpwPathCanonicalize function:

Page § 22

Static Analysis

Enter the sub_5FDDA180 function, starting at 0x5FDDA1E0, we can see
that the program uses the wcscat() function to splice the path, and the
spliced path will be placed in the local variable var_418. Next, a loop
operation (green bold arrow) is used to check whether the "/" character or
"slash" character exists in the spliced string. If it exists, it will be converted
to the backslash character or "" character

After the conversion is completed, the program will push var_418, the
converted path string, as the only argument to the stack, and call the
sub_5FDDA26B function. It is this function that has an overflow problem.

Page § 23

Page § 24

Packed and Obfuscated Malware

• Malware writers often use packing or obfuscation to make their
files more difficult to detect or analyze.

• Obfuscated programs are ones whose execution the malware
author has attempted to hide.

• Packed programs are a subset of obfuscated programs in which the
malicious program is compressed and cannot be analyzed.

• Both techniques will severely limit your attempts to statically analyze
the malware.

Page § 25

Packed and Obfuscated Malware

Page § 26

Packers and Cryptos

Page § 27

Load PE file (Notepad.exe) into Memory

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL
Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
00000000
00000040

000000E0

000001D8
00000200
00000228

00000400

00007C00

00008400

00010800

<File> <Memory>

8400

800

7800

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL

Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
01000000
01000040

010000E0

010001D8
01000200
01000228

01001000

01009000

0100B000

01014000

8314

1BA8

7748

Notepad.exe

Page § 28

DOS Header

The first 2 letters are always the
letters "MZ", the initials of Mark
Zbikowski, who created the first linker
for DOS. To some people, the first few
bytes in a file that determine the type
of file are called the "magic number,"

Page § 29

DOS Header

value for e_lfanew à ?
E0 00 00 00

long à 32 bit à ? Byte

Page § 30

NT Header

Page § 31

Anti-virus: How they actually work

• Nowadays AV scans our system on real-time basis.

• Information is analyzed based on the origin of the information
• i.e. source of information.

• Operates differently depending upon source of information.

Page § 32

Anti-virus working from top level view.

If the file is found malicious then the information will not be
copied onto the destination location.
(Here destination in our case is HD)

Page § 33

One of the two possibilities takes place

• When the data is found to be legitimate, the scanner forwards that
data to the destination location.

• When virus is detected then a warning is sent to UI for user`s
action. Interface may vary.

Page § 34

Traditional Antivirus Methods

AV scanner,
scanning
information on
real time.

Page § 35

Hash-based blacklisting

Hash-based blacklisting
– Simple and efficient method

– Requires maintaining a large virus signature database
– Always reactive, not proactive
– Sensitive to virus variations

– Fast update process for new samples

Page § 36

AV detection techniques(Scan - Engines)

• Signature Based detection (also sometimes called as “string
based” detection)

• AV maintains a dictionary of the signatures of known Viruses,
malwares, spywares etc.

• This dictionary is stored at client side and is usually in binary.
• Next-generation signature based detection
• Disadvantage?

Page § 37

Page § 38

Page § 39

Signature-based detection

Signature-based detection
– Based on file offset and unique binary code

– Can detect new variants if the signature is well chosen
– One-to-many detection for the same virus family
– Requires experienced analysts

– Possibility of false positives/negatives
– Time-consuming update process

Page § 40

Heuristic based Detection

• Used to detect new, unknown viruses in your system that has not
yet been identified.

• Based on the piece-by-piece examination of a virus.
• Looks for the sequence of instruction that differentiate the virus from

‘normal programs’
• Disadvantage?

Page § 41

AV bypassing techniques

This are those
techniques that the

hackers and
crackers already

knew.

• Binders and packers
• Using splitter
• Code conversion from EXE to

These are: client side script
• Code obfuscation
• Using metasploit framework
• Code or DLL Injection

Page § 42

Packed and Obfuscated Malware

• Malware writers often use packing or obfuscation to make their
files more difficult to detect or analyze.

• Obfuscated programs are ones whose execution the malware
author has attempted to hide.

• Packed programs are a subset of obfuscated programs in which the
malicious program is compressed and cannot be analyzed.

• Both techniques will severely limit your attempts to statically analyze
the malware.

Page § 43

Packers and Cryptos

Page § 44

Packed and Obfuscated Malware

Page § 45

Binders and Packers

• Binders

Page § 46

Splitting the File and Code Obfuscation

• These are those programs that split a single files into no. of
small sized files.

• One may change some code into some small chunked file to evade
AV detection and again join it and scan it to check whether AV flags
it malicious or not. A trial and Error method..

Page § 47

Behavioral based detection

• Just observes how the program executes, rather than merely
emulating its execution.

• Identify malware by looking for suspicious behavior.

• Disadvantage?

Page § 48

Sandboxing Based detection

• What is “sandbox” ?

• Isolate the files which are to be scanned and monitors their
activity.

Page § 49

Heuristic Engines

§ Heuristic engines are basically statistical and rule based analyze
mechanisms.

§ Their main purpose is detecting new generation(previously unknown)
viruses by categorizing and giving threat/risk grades to code fragments
according to predefined criteria.

§ Heuristic engines are the most advanced part of AV products they use
significant amount of rules and criteria.

§ Since no anti virus company releases blueprints or documentation about
their heuristic engines all known selective criteria's about their threat/risk
grading policy are found with trial and error.

Page § 50

Dynamic Heuristic Analysis

Unknown Sample Sandbox Log File Malware Fingerprint

PE file contains C:\, D:\, E:\
And windows,
System32 Folder and
system file

monitoring the behavior
of the unknow sample,
logging the function
call, parameters, etc…

malware expert use the
log file to find the key
features and add it to
the malware database

Page § 51

Some of the known rules about threat grading

– Decryption loop detected
– Reads active computer name
– Reads the cryptographic machine GUID
– Contacts random domain names
– Reads the windows installation date
– Drops executable files
– Found potential IP address in binary memory
– Modifies proxy settings
– Installs hooks/patches the running process
– Injects into explorer
– Injects into remote process
– Queries process information
– Sets the process error mode to suppress error box
– Unusual entrophy
– Possibly checks for the presence of antivirus engine
– Monitors specific registry key for changes

Page § 52

Some of the known rules about threat grading

– Contains ability to elevate privileges
– Modifies software policy settings
– Reads the system/video BIOS version
– Endpoint in PE header is within an uncommon section
– Creates guarded memory regions
– Spawns a lot of processes
– Tries to sleep for a long time
– Unusual sections
– Reads windows product id
– Contains decryption loop
– Contains ability to start/interact device drivers
– Contains ability to block user input

Page § 53

Pros Cons
Static Heuristic Analysis Fast, easy Cannot handle shell, code

obfuscation
Dynamic Heuristic
Analysis

It can “reveal” the
malware

May attacked by the anti-
VM technology

Page § 54

Port 445: Overview, Use Cases, and Security Risks

1.What is Port 445?
1. TCP/UDP port used by the Server Message Block (SMB) protocol

2. Facilitates file, printer, and named pipe sharing in Windows networks

2.Port 445 Use Cases
1. File and printer sharing between Windows devices

2. Remote administration of network devices

3. Communication with Active Directory services

3.Security Risks
1. Vulnerable to unauthorized access if not properly secured

2. Exploitation of SMB vulnerabilities (e.g., WannaCry and NotPetya ransomware attacks)

3. Potential for information leakage if SMB traffic is not encrypted

4.Mitigating Security Risks
1. Use firewalls to restrict access to Port 445

2. Disable SMBv1 and use SMBv2 or SMBv3 with encryption

3. Keep systems updated with the latest security patches

Page § 55

Understanding IPC$ in Windows Networking

1.What is IPC$?
1. IPC$ stands for Inter-Process Communication (IPC) Share

2. It is a hidden administrative share in Windows operating systems

2.IPC$ Basics

1. Facilitates communication between processes on the same or different computers

2. Implemented using the Server Message Block (SMB) protocol

3.Role of IPC$ in Windows Networking

1. Enables remote administration and management of resources

2. Provides a mechanism for authentication and authorization

4.Security Considerations

1. IPC$ can potentially be exploited by attackers

2. Ensure proper security measures to mitigate risks

Page § 56

