
CSC 471 Modern Malware Analysis
Code Injection (3) & PE Structure (2)

Si Chen (schen@wcupa.edu)

Class14

Page § 2

Code Injection

Code injection is the term used to describe attacks that
inject code into an application. That injected code is then
interpreted by the application.

Page § 3

Code Injection (thread injection)

CodeInjection.exe
Process

(1) Inject data & code
(2) Execute

target.exe
Process

ThreadParam

ThreadProc()
{…}

code à injected by ThreadProc()
data à injected as ThreadParam

Page § 4

CodeInjection.cpp – ThreadProc()

hMod = LoadLibraryA(“user32.dll”);

pFunc = GetProcAddress(hMod, “MessageBoxA”);

pFunc(NULL, “www.reversecore.com”, “ReverseCore”, MB_OK);

http://www.reversecore.com/

Page § 5

CodeInjection.cpp – InjectCode()

Page § 6

CodeInjection.cpp – InjectCode()

Page § 7

CodeInjection.cpp – InjectCode()

§ OpenProcess()

§ //data: THREAD_PARAM
§ VirtualAllocEx()

§ WriteProcessMemory()

§ //Code: ThreadProc()
§ VirtualAllocEx()

§ WriteProcessMemory()

§ CreateRemoteThread()

// Prepare the THREAD_PARAM structure with necessary function pointers and
strings.
// Open the target process with necessary privileges.
// Allocate memory in the target process for THREAD_PARAM.
// Write THREAD_PARAM to the allocated memory in the target process.
// Allocate memory for the ThreadProc function in the target process and set
it to executable.
// Write the ThreadProc function to the allocated memory in the target
process.
// Create a remote thread in the target process that starts at the ThreadProc
function.
// Wait for the thread to complete execution.
// Close handles and return TRUE on successful injection.

Page § 8

How to Debug Code Injection (OllyDBG)

Page § 9

Ancient forbidden technique: manual code injection.

Page § 10

Page § 11

Portable Executable (PE) file

§ A Portable Executable (PE) file is the standard binary file format for an
Executable (.exe) or DLL under Windows NT, Windows 95, and Win32.

§ Derived from COFF (Common Object File Format) in UNIX platform, and it
is not really “portable”.

Now here is the kicker. Even though this specification is
spelled out by Microsoft, compilers/linkers chose to ignore
some parts of it.

To make things even worse, the Microsoft loader doesn't
enforce a good portion of this specification and instead
makes assumptions if things start getting weird.

So even though the spec outlined here says a particular
field is supposed to hold a certain value, the
compiler/linker or even a malicious actor could put
whatever they want in there and the program will
likely still run...

Page § 12

Portable Executable (PE) file

§ PE formatted files include:
– .exe, .scr (executable)
– .dll, .ocx, .cpl, drv (library)

– .sys, .vxd (driver files)
– .obj (objective file)

§ All PE formatted files can be executed, except obj file.
– .exe, .scr can be directly executed inside Shell (explorer.exe)
– others can be executed by other program/service

§ PE refers to 32 bit executable file, or PE32. 64 bit executable file is
named as PE+ or PE32+. (Note that it is not PE64).

Page § 13

PE Example – Notepad.exe

Page § 14

Load PE file (Notepad.exe) into Memory

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL
Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
00000000
00000040

000000E0

000001D8
00000200
00000228

00000400

00007C00

00008400

00010800

<File> <Memory>

8400

800

7800

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL

Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
01000000
01000040

010000E0

010001D8
01000200
01000228

01001000

01009000

0100B000

01014000

8314

1BA8

7748

Notepad.exe

Page § 15

Page § 16

VA & RVA

§ VA (Virtual Address): The address is called a “VA” because Windows
creates a distinct VA space for each process, independent of physical
memory. For almost all purposes, a VA should be considered just an
address. A VA is not as predictable as an RVA because the loader might
not load the image at its preferred location.

§ RVA (Relative Virtual Address): The address of an item after it is loaded
into memory, with the base address of the image file subtracted from it.
The RVA of an item almost always differs from its position within the file
on disk (file pointer).

RVA + ImageBase = VA

In 32bit Windows OS, each process has 4GB virtual memory
which means the range of VA is: 00000000 - FFFFFFFF

Page § 17

DOS Header

The first 2 letters are always the
letters "MZ", the initials of Mark
Zbikowski, who created the first linker
for DOS. To some people, the first few
bytes in a file that determine the type
of file are called the "magic number,"

Page § 18

DOS Header

value for e_lfanew à ?
E0 00 00 00

long à 32 bit à ? Byte

Page § 19

DOS Header

e_lfanew à 000000E0

Page § 20

DOS stub

https://virtualconsoles.com/online-emulators/dos/

https://virtualconsoles.com/online-emulators/dos/

Page § 21

NT Header

https://docs.microsoft.com/en-
us/windows/desktop/api/winnt/

Page § 22

NT Header

Page § 23

Section Header

Name Privilege
.code Executable, read
.data Non-Executable, read/write

.resource Non-Executable, read

Page § 24

Section Header

Page § 25

Section Header

Members Meaning
VirtualSize The total size of the

section when loaded into
memory, in bytes.

VirtualAddress The address of the first
byte of the section when
loaded into memory (RVA)

SizeOfRaw Data The size of the section
data on disk, in bytes.

PointerToRawData The address of the first
byte of the section on

disk.
Characteristics The characteristics of the

image.

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL
Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
00000000
00000040

000000E0

000001D8
00000200
00000228

00000400

00007C00

00008400

00010800

<File> <Memory>

8400

800

7800

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL

Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
01000000
01000040

010000E0

010001D8
01000200
01000228

01001000

01009000

0100B000

01014000

8314

1BA8

7748

Notepad.exe

https://docs.microsoft.com/en-
us/windows/desktop/api/winnt/ns-winnt-
_image_section_header

Page § 26

Section Header

Page § 27

Inspecting PE Header Information in Linux

Page § 28

Inspecting PE Header Information

Page § 29

Inspecting file imports with pefile library

Page § 30

Inspecting file export with pefile library

Page § 31

Inspecting PE Header Information in Linux

Page § 32

Inspecting PE Header Information

Page § 33

Examining PE Section Table and Sections

§ https://hub.docker.com/r/remnux/pescanner/

Page § 34

IAT (Import Address Table)

Page § 35

IAT (Import Address Table)

§ Let’s review the concept of DLL (Dynamic Link Library) again…

Page § 36

Dynamic Linking

Page § 37

16-Bit DOS System

import Library à Put binary code of stdio
library into the executable file

Page § 38

Static Linking

Program2
Program2.obj
Lib.obj

Program1
Program1.obj
Lib.obj

Memory

Program2
Program2.obj
Lib.obj

Program1
Program1.obj
Lib.obj

• Waste space
• Hard to maintain

Page § 39

Dynamic Linking

Program2
Program2.obj

Program1
Program1.obj Memory

Program2
Program2.obj

Program1
Program1.obj

Lib.dll
Lib.obj

Lib.dll
Lib.obj

Dynamic linking has the following
advantages:
1.Saves memory
2.Saves disk space.
3.Upgrades to the DLL are easier.
4.Provides after-market support.
5.Supports multi language
programs.
6.Eases the creation of
international versions

Page § 40

Two ways to Load DLL

Notepad.exe Process

kernel32.dll
user32.dll
gdi32.dll
shell32.dll
advapi32.dll
ntdll32.dll

.text
.data
.rsrc

Page § 41

Two ways to Load DLL

§ Explicit Linking (run-time dynamic linking)
– the executable using the DLL must make function calls to explicitly load and

unload the DLL, and to access the DLL's exported functions.

§ Implicit Linking (load-time dynamic linking)
– The operating system loads the DLL when the executable using it is loaded.

An executable file links to (or loads) a DLL in one of two ways:

Page § 42

Two ways to Load DLL

Notepad.exe Process

kernel32.dll
user32.dll
gdi32.dll
shell32.dll
advapi32.dll
ntdll32.dll

.text
.data
.rsrc

Notepad.exe Process

kernel32.dll
user32.dll
gdi32.dll

shell32.dll
advapi32.dll
ntdll32.dll

myhack.dll

myhack.dll

.text
.data
.rsrc

DLL Injection

Implicit Linking
(load-time
dynamic linking)

Explicit Linking (run-
time dynamic linking)

Page § 43

Two ways to Load DLL

§ Explicit Linking (run-time dynamic linking)
– the executable using the DLL must make function calls to explicitly load and

unload the DLL, and to access the DLL's exported functions.

§ Implicit Linking (load-time dynamic linking)
– The operating system loads the DLL when the executable using it is loaded.

An executable file links to (or loads) a DLL in one of two ways:

DLL Injection

IAT Table

Page § 44

Implicit Linking and IAT (Import Address Table)

§ Notepad.exe Call CreateFileW() à Call 0x01001104 à Call 0x7C810CD9

Page § 45

Implicit Linking and IAT (Import Address Table)

§ Notepad.exe Call CreateFileW() à Call 0x01001104 à Call 0x7C810CD9

Call 0x01001104

IAT Table

Function Name IAT Address Real Address
…
CreateFileW() 0x01001104 0x7C810CD9
…

When the application was first compiled, it was designed so that all API calls will
NOT use direct hardcoded addresses but rather work through a function
pointer.

This was accomplished through the use of an import address table. This is a
table of function pointers filled in by the windows loader as the dlls are loaded.

Look up

Page § 46

IAT (Import Address Table)

Why IAT?

Page § 47

IAT (Import Address Table)

Call CreateFileW() --> Call 0x01001104

IAT Table

Function Name IAT Address Real Address
…
CreateFileW() 0x01001104 0x7C810CD9
…

Look up

§ Support different Windows Version (9X, 2K, XP, Vista, 7, 8, 10)

XP

Function Name IAT Address Real Address
…
CreateFileW() 0x01001104 0x7C81FFFF
…

Windows 7

Page § 48

IAT (Import Address Table)

§ Support DLL Relocation

ImageBase: 10000000
B.DLL

Demo.exe

ImageBase: 10000000
A.DLL

3C000000

10000000

ImageBase: 10000000
B.DLL

relocation

Page § 49

Look up IAT Table with PEview

Page § 50

Import Directory Table

§ The Import Directory Table contains entries for every DLL which is loaded
by the executable. Each entry contains, among other, Import Lookup
Table (ILT) and Import Address Table (IAT)

Page § 51

Inspecting file imports with pefile library

Page § 52

Page § 53

Real-world Case Study

Page § 54

16d6b0e2c77da2776a88dd88c7cfc672
(Trojan.Win32.Dllhijack.a)

Page § 55

16d6b0e2c77da2776a88dd88c7cfc672

Page § 56

16d6b0e2c77da2776a88dd88c7cfc672

Page § 57

16d6b0e2c77da2776a88dd88c7cfc672

§ https://www.hybrid-
analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155
240581f4aa554be17925c?environmentId=100

https://www.hybrid-analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155240581f4aa554be17925c?environmentId=100
https://www.hybrid-analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155240581f4aa554be17925c?environmentId=100
https://www.hybrid-analysis.com/sample/037203d274cb66bad34559c0f426e9e1bf91a048155240581f4aa554be17925c?environmentId=100

Page § 58

0fd6e3fb1cd5ec397ff3cdbaac39d80c

Page § 59

Page § 60

6a764e4e6db461781d080034aab85aff
&

cc3c6c77e118a83ca0513c25c208832c

Page § 61

Page § 62

e0bed0b33e7b6183f654f0944b607618

Page § 63

e0bed0b33e7b6183f654f0944b607618

Page § 64

db8199eeb2d75e789df72cd8852a9fbb
(Rootkit.Win32.blackken.b)

Page § 65

db8199eeb2d75e789df72cd8852a9fbb

Is this claim correct?
 If two export functions share the same address, it’s a malware.

Page § 66

1c1131112db91382b9d8b46115045097

Page § 67

1c1131112db91382b9d8b46115045097

Page § 68

EAT (Export Address Table)

§ Similar to IAT, EAT data is stored in IMAGE_EXPORT_DIRECTORY
§ EAT contains an RVA that points to an array of pointers to (RVAs of) the

functions in the module.

Page § 69

Lab3

§ Create your own anti-malware system based on heuristic analysis.
§ Check course website

