
CSC 471 Modern Malware Analysis
Code Injection

Si Chen (schen@wcupa.edu)

Class11



Page § 2

Hookdbg.exe

§API hook for Notepad WriteFile() function



Page § 3

WriteFile() Definition from MSDN



Page § 4

How Debugger Works

OS Debuggee

Exception
Event

Event 
Handling

OS

Debuggee

Exception
Event

Event 
Handling

Debugger

Event 
Handling

Event
Request



Page § 5

https://docs.microsoft.com/en-
us/windows/win32/api/winnt/ns-winnt-
exception_record



Page § 6

Debugging Techniques and Workflow

§ Hooking APIs has been used in debugging techniques:
– The basic idea is, in the "debugger-debuggee" state, to modify the starting part of the 

debuggee's API to 0xCC, transferring control to the debugger to perform specified 
operations, and finally returning the debuggee to a running state.

OS

Debuggee

Exception
Event

Event 
Handling

Debugger

Event 
Handling

Event
Request



Page § 7

§ The specific debugging process is as follows:
1. Attach to the process you want to hook, making it the debuggee.

2. Hook: Change the first byte of the API's starting address to 0xCC.

3. When the corresponding API is called, control is transferred to the debugger.

4. Perform the necessary operations (operating parameters, return values, etc.).

5. Unhook: Restore 0xCC to its original value (to ensure the API runs normally).

6. Run the corresponding API (in a normal state without 0xCC).

7. Hook: Modify it to 0xCC again (for continued hooking).

8. Return control to the debuggee.

OS

Debuggee

Exception
Event

Event 
Handling

Debugger

Event 
Handling

Event
Request



Page § 8



Page § 9



Page § 10



Page § 11



Page § 12



Page § 13

Code Injection

Code injection is the term used to describe attacks that 
inject code into an application. That injected code is then 
interpreted by the application.



Page § 14

Code Injection (thread injection)

CodeInjection.exe
Process

(1) Inject data & code
(2) Execute

target.exe
Process

ThreadParam

ThreadProc()
{…}

code à injected by ThreadProc()
data à injected as ThreadParam



Page § 15

Why Code Injection

§ 1. Use less memory à you don’t need to compile it as DLL 
§ 2. Hard to detect à DLL injection can easily be spotted, code injection is 

very sneaky. 

§ In short: 
– DLL injection is for huge code base and complex logic.
– Code injection is for small code base with simple logic. 



Page § 16

DLL Injection V.S. Code Injection

Pop up a Windows message box

How to use DLL Injection to injection the code?



Page § 17

myhack.cpp



Page § 18

DLL Injection V.S. Code Injection

How to use DLL Injection to injection the code?

Compile it as MsgBox.dll and inject it to the target process
same as DLL injection lab!

https://learn.microsoft.com/en-
us/windows/win32/api/winuser/
nf-winuser-messagebox



Page § 19

DLL Injection (MsgBox.dll)



Page § 20

DLL Injection (MsgBox.dll)

Notepad.exe Process

kernel32.dll
user32.dll
gdi32.dll

shell32.dll
advapi32.dll
ntdll32.dll

myhack.dll myhack.dll

.text
.data
.rsrc

DLL Injection
execute DllMain() 

in myhack.dll



Page § 21

Code Injection

You need to inject the code

And the data:



Page § 22

Code Injection Example (CodeInjection.exe)



Page § 23

CodeInjection.cpp – main()



Page § 24

CodeInjection.cpp – ThreadProc()



Page § 25

CodeInjection.cpp – ThreadProc()

hMod = LoadLibraryA(“user32.dll”);

pFunc = GetProcAddress(hMod, “MessageBoxA”);

pFunc(NULL, “www.reversecore.com”, “ReverseCore”, MB_OK);

http://www.reversecore.com/


Page § 26

Cannot use the following address for Code Injection

CodeInjection.exe
Process

(1) Inject data & code
(2) Execute

target.exe
Process

ThreadParam

ThreadProc()
{…}



Page § 27

You cannot use the address provided for code injection.

Because 
MessageBoxA
and Caption and
“Text” are not 
loaded, these 
addresses cannot 
be used for code 
injection.



Page § 28

CodeInjection.cpp – InjectCode()



Page § 29

CodeInjection.cpp – InjectCode()



Page § 30

CodeInjection.cpp – InjectCode()

§ OpenProcess()

§ //data: THREAD_PARAM
§ VirtualAllocEx()

§ WriteProcessMemory()

§ //Code: ThreadProc()
§ VirtualAllocEx()

§ WriteProcessMemory()

§ CreateRemoteThread()

// Prepare the THREAD_PARAM structure with necessary function pointers and 
strings.
// Open the target process with necessary privileges.
// Allocate memory in the target process for THREAD_PARAM.
// Write THREAD_PARAM to the allocated memory in the target process.
// Allocate memory for the ThreadProc function in the target process and set 
it to executable.
// Write the ThreadProc function to the allocated memory in the target 
process.
// Create a remote thread in the target process that starts at the ThreadProc 
function.
// Wait for the thread to complete execution.
// Close handles and return TRUE on successful injection.



Page § 31

How to Debug Code Injection (OllyDBG)



Page § 32

Ancient forbidden technique: manual code injection.



Page § 33



Page § 34


