
CSC 471 Modern Malware Analysis
DLL Injection, Static Analysis

Si Chen (schen@wcupa.edu)

Class3



Page § 2

Course Outline (1)

§ DLL Injection
– Dynamic-link library
– DLL Injection example

– Source code of myhack.dll

§ Static Analysis
– Cryptographic Hash

– Anti-Virus Scanning
– Strings
– PE file
– Packer and Cryptor

§ PE Format



Page § 3

Dynamic-link library (DLL)

§ Dynamic-link library (or DLL) is Microsoft's implementation of the shared 
library concept in the Microsoft Windows

§ A DLL is a module that contains functions (called exported functions or 
exports) that can be used by another program.

Notepad.exe Process

kernel32.dll
user32.dll
gdi32.dll
shell32.dll
advapi32.dll
ntdll32.dll

.text
.data
.rsrc

https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Shared_library
https://en.wikipedia.org/wiki/Shared_library
https://en.wikipedia.org/wiki/Microsoft_Windows


Page § 4

Dynamic Linking

Program2
Program2.obj

Program1
Program1.obj Memory

Program2
Program2.obj

Program1
Program1.obj

Lib.dll
Lib.obj

Lib.dll
Lib.obj



Page § 5

Dynamic Linking in Linux and Windows

Linux Windows
ELF file .exe (PE)
.so (Shared object file) .dll (Dynamic Linking

Library)
.a .lib (static linking library)
.o (intermediate file
between complication
and linking, object file)

.obj



Page § 6

Common DLLs
Notepad.exe Process

kernel32.dll
user32.dll
gdi32.dll
shell32.dll
advapi32.dll
ntdll32.dll

.text
.data
.rsrc



Page § 7

DLL Injection

§ DLL injection is method of injecting code to some other processe’s
address space and executing that piece of code on behalf of that 
process.

§ DLL injection provides a platform for manipulating the execution of a 
running process. 
– It's very commonly used for logging information while reverse engineering.
– It has gained bad name for itself since it’s mostly used by malware for stealth 

purposes:
• Hiding malicious code into system process

– Winlogon.exe, services.exe, svchost.exe explorer.exe
• Open backdoor port

• Connect remote server
• Keylogging…

– It’s also frequently used within the game hacking world to code bots



Page § 8

DLL Injection

Notepad.exe Process

kernel32.dll
user32.dll
gdi32.dll

shell32.dll
advapi32.dll
ntdll32.dll

myhack.dll

myhack.dll

.text
.data
.rsrc

DLL Injection



Page § 9

DLL Injection



Page § 10

DLL Injection



Page § 11

Let’s try our first “Malware”

§ Download and run XP VM image
§ Open command line terminal and go to C:\Work
§ Open a Notepad
§ Open DebugView
§ Open Process Explorer and find the PID of Notepad
§ In command line, type 

– InjectDll.exe <PID OF NOTEPAD> myhack.dll



Page § 12

Screenshots



Page § 13

Screenshots



Page § 14

DllMain()

Notepad.exe Process

kernel32.dll
user32.dll
gdi32.dll

shell32.dll
advapi32.dll
ntdll32.dll

myhack.dll myhack.dll

.text
.data
.rsrc

DLL Injection
execute DllMain() 

in myhack.dll



Page § 15

Source Code of myhack.dll



Page § 16

Source Code of myhack.dll



Page § 17

Source Code of myhack.dll

Page § 16

Source Code of myhack.dll



Page § 18

Static Analysis



Page § 19

Fingerprinting the Malware -- Cryptographic Hash



Page § 20

Fingerprinting the Malware

§ Fingerprinting involves generating the cryptographic hash values for the 
suspect binary based on its file content.

§ Same cryptographic hashing algorithms:
– MD5
– SHA1
– SHA256

§ Why not just use the file name?
– Ineffective, same malware sample can use different filenames, cryptographic 

hash is calculated based on the file content.

§ File hash is frequently used as an indicator to share with other security 
researchers to help them identify the sample. 



Page § 21

Tools and Python code

md5sum
sha256sum
sha1sum



Page § 22

Strings

§ Finding Strings [1]

– A string in a program is a sequence of characters such as “the.” 
– A program contains strings if it prints a message, connects to a URL, or copies 

a file to a specific location. 
– Searching through the strings can be a simple way to get hints about the 

functionality of a program. 
• For example, if the program accesses a URL, then you will see the URL 

accessed stored as a string in the program. 
– You can use the Strings program to search an executable for strings, which are 

typically stored in either ASCII or Unicode format. 

[1]. Practical Malware Analysis, page 11



Page § 23

Static analysis (myhack.dll)



Page § 24

Static analysis (myhack.dll)

Sometimes the strings detected by the 
Strings program are not actual strings. 



Page § 25

strings in Linux and flare-floss

§ FireEye Labs Obfuscated String Solver
– Many malware authors evade heuristic detections by obfuscating only key 

portions of an executable
• These portions are strings and resources used to configure domains, 

files, and other artifacts of an infection
– The FireEye Labs Obfuscated String Solver (FLOSS) uses advanced static 

analysis techniques to automatically deobfuscate strings from malware 
binaries.



Page § 26

Packed and Obfuscated Malware

• Malware writers often use packing or obfuscation to make their 
files more difficult to detect or analyze. 

• Obfuscated programs are ones whose execution the malware 
author has attempted to hide. 

• Packed programs are a subset of obfuscated programs in which the 
malicious program is compressed and cannot be analyzed. 

• Both techniques will severely limit your attempts to statically analyze 
the malware.



Page § 27

Packed and Obfuscated Malware



Page § 28

Packers and Cryptos



Page § 29

Real-world Case Study



Page § 30

0cddd8c2084adb75689b5855a70cc4a8

(Trojan-Downloader. Powershell. Agent.a)



Page § 31

44dcace0cfa9c0f6be1965841bc11410

(Downloader. JS. Agent.a)



Page § 32

84f1fa3c698915b91257706d1e4e3f0e
(Trojan.BAT.Agent.a)



Page § 33

9b2293323610ccb2af33f977cb21f45c
(Trojan.JS.Agent.a)



Page § 34

b5b98837ede4701a98f1467ab53160fb
(Trojan.JS.Agent.a)



Page § 35

bc70dba947cd5df9fd750353da3faed7
(Trojan.VBS.Agent.a)



Page § 36

dbfcc7ffadee586e24f8247387b10d6e
(Trojan.JS.Agent.b)



Page § 37

dee2decebaf53fead3714cfa6e862378
(Trojan.JS.Agent.c)



Page § 38


