
CSC 471 Modern Malware Analysis
Anti-Debugging Techniques (3):

TLS (Thread Local Storage) Callback Function and 
Advanced Anti-Debugging Techniques

Si Chen (schen@wcupa.edu)

Class17



Page § 2

Advanced Anti-Debugging Techniques

§ Advanced Anti-Debugging Techniques:
– Thread Local Storage (TLS) Callback Function
– Garbage Code

– Break Code Alignment
– Encryption/Decryption
– Stolen Bytes (Remove OEP)
– API Redirection

– Self Debugging



Page § 3

TLS Callback Function Example1: HelloTls.exe

Double Click

Use OllyDBG to load it



Page § 4

Process and Thread

§ Process is the execution of a program that allows you to perform the 
appropriate actions specified in a program. It can be defined as an 
execution unit where a program runs. The OS helps you to create, 
schedule, and terminates the processes which is used by CPU. The other 
processes created by the main process are called child process.

§ Thread is an execution unit that is part of a process. A process can have 
multiple threads, all executing at the same time. It is a unit of execution in 
concurrent programming. A thread is lightweight and can be managed 
independently by a scheduler. It helps you to improve the application 
performance using parallelism.

https://www.youtube.com/watch?v=Dhf-DYO1K78

https://www.youtube.com/watch?v=Dhf-DYO1K78


Page § 5

Process and Thread



Page § 6

Thread and fork()



Page § 7

Thread Local Storage

§ Thread Local Storage (TLS) is the mechanism by which each thread in 
a given multithreaded process allocates storage for thread-specific 
data.

§ Static and global data are shared across all the threads. If you modified 
a global/static variable it is visible to all the threads. 

§ Unlike global/shared variable if you create a variable in TLS, every 
thread has its own copy of the variable, i.e. changes to the variable is 
local to the thread. 



Page § 8

Thread Local Storage



Page § 9

Thread Local Storage

§ Thread Local Storage (TLS) is the mechanism by which each thread in 
a given multithreaded process allocates storage for thread-specific 
data.

§ Static and global data are shared across all the threads. If you modified 
a global/static variable it is visible to all the threads. 

§ Unlike global/shared variable if you create a variable in TLS, every 
thread has its own copy of the variable, i.e. changes to the variable is 
local to the thread. 



Page § 10

IMAGE_TLS_DIRECTORY

https://github.com/Alexpux/mingw
-w64/blob/master/mingw-w64-
tools/widl/include/winnt.h



Page § 11

IMAGE_TLS_DIRECTORY



Page § 12

What’s TLS Callback Function?

§ TLS (Thread Local Storage) callbacks are provided by the Windows 
operating system to support additional initialization and termination for 
per-thread data structures.

§ TLS callback functions allow malware authors to execute malicious 
code before the debugger has a chance to pause at the traditional 
Entry Point (EP).



Page § 13



Page § 14

TLS Callback Function Example2: TlsTest.exe



Page § 15

TLS Callback Function Example2: TlsTest.exe



Page § 16

TLS Callback Function Example2: TlsTest.exe



Page § 17

How to debuy TLS callback functions



Page § 18

Garbage Code

§ Add lots of garbage (meaningless) code to increase the difficult of code 
debugging. 

§ Hide the real code inside these garbage code. 



Page § 19



Page § 20



Page § 21

Break Code Alignment

A3: MOV
A368 -- 7201



Page § 22

Encryption/Decryption



Page § 23

Stolen Bytes (Remove OEP)



Page § 24

API Redirection

§ The code protector first copy all (or part) of main API code to a different 
memory region. And change the code that calls these APIs. 



Page § 25

Debug Blocker (Self Debugging)

§ Self Debugging

Debugger: PID 3072
Debuggee: PID 2092



Page § 26

General Anti-Debugging VS Debug Blocker

SE Handler

Exception

General Anti-Debugging 

SE Handler

Debug Blocker

Father (Debugger)

Child (Debuggee)

Exception



Page § 27

Nanomite

§ Derived from Debug Blocker
§ Replace all Jcc (jump) to INT3 (0xCC)
§ The Debugger maintains a table to store all addresses for each Jcc.



Page § 28


