
CSC 471 Modern Malware Analysis
Anti-Debugging Techniques (2):

Dynamic Anti-Debugging
Si Chen (schen@wcupa.edu)

Class16



Page § 2

Anti-Debugging

§ Malware authors have always looked for new techniques to stay 
invisible. This includes, of course, being invisible on the compromised 
machine, but it is even more important to hide malicious indicators and 
behavior during analysis. 

§ Debugging is the essential part of malware analysis. Every time we need 
to drill down into malware behavior, restore encryption methods or 
examine communication protocols, we use debuggers. 

§ To make the post-detection analysis more difficult, threat actors use 
various anti-analysis techniques, one of the more common ones is Anti-
Debugging.



Page § 3

Static Anti-Debugging VS. Dynamic Anti-Debugging

Static Dynamic
Difficulty Level Easy, Medium Hard
Key idea Use System Information Reverse and exploit Debugger
Target Detect Debugger Hide it’s own code and data
Time point When debugging started While debugger are running
Defend 
Method(s)

API hook, debugger plugin API hook, Debugger Plugin, 
Other tools

Example(s) PEB, TEB, Native API, TLS SHE, Break Points (INT3), 
Timing Check



Page § 4

Dynamic Anti-Debugging

Dynamic Anti-Debugging techniques are trying to interfere 
with the debugger, so it cannot debug the binary program 
correctly (to hide its Original Entry Point (OEP)).



Page § 5

Dynamic Anti-Debugging -- Exception

§ Structured exception handling (SEH) is a Microsoft extension to C to 
handle certain exceptional code situations, such as hardware faults, 
gracefully.

Although Windows and Microsoft C++ support SEH, we recommend that you use ISO-standard C++ 
exception handling. It makes your code more portable and flexible. -- MSDN



Page § 6

Typical Exceptions in Windows System



Page § 7

SEH Example – SEH.exe



Page § 8

EXCEPTION_BREAKPOINT

Program will automatically call the registered SEH. If the program is 
running under the Debug mode, it will stop the program and give the 
control back to the debugger. 



Page § 9

SEH Example – DynAD_SEH.exe



Page § 10

SEH Example – DynAD_SEH.exe

Install SEH

INT3 Error

Cannot go to SE Handler

JMP to abnormal code

go to SE Handler

Run normal code

debug mode normal mode



Page § 11

SEH Example – DynAD_SEH.exe

Install SEH

INT3 Error

Cannot go to SE Handler

JMP to abnormal code

go to SE Handler

Run normal code

debug mode normal mode



Page § 12

How to bypass INT3 breaks



Page § 13

Timing Check

*Get 1st Time (T1)

A bunch of code
-loop

-garbage code
-encryption/decryption

*Get 2nd Time (T2)

If T2 – T1 > 1 (sec)
Call ExitProcess()

Aka Anti-Emulating



Page § 14

How to calculate time intervals

§ Counter based method
– RDTSC (ReaD Time Stamp Counter)
– kernel32!QueryPerformanceCounter()/ntdll!NtQueryPerformanceCounter()

– kernel32!GetTickCount()

§ Time based method
– timeGetTime()

– _ftime()

Use CPU counter
Or system time



Page § 15

Timing Check Example – DynAD_RDTSC.exe

The Time Stamp Counter (TSC) is a 64-bit register present on 
all x86 processors since the Pentium. It counts the number of 
CPU cycles since its reset. 

The instruction RDTSC returns the TSC in EDX:EAX. In x86-
64 mode, RDTSC also clears the upper 32 bits of RAX and RDX. 
Its opcode is 0F 31

https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Intel_P5
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/RAX_register
https://en.wikipedia.org/wiki/RDX_register
https://en.wikipedia.org/wiki/Opcode


Page § 16

Timing Check Example – DynAD_RDTSC.exe

The Time Stamp Counter (TSC) is a 64-bit register present on 
all x86 processors since the Pentium. It counts the number of 
CPU cycles since its reset. 

The instruction RDTSC returns the TSC in EDX:EAX. In x86-
64 mode, RDTSC also clears the upper 32 bits of RAX and RDX. 
Its opcode is 0F 31

https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Intel_P5
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/RAX_register
https://en.wikipedia.org/wiki/RDX_register
https://en.wikipedia.org/wiki/Opcode


Page § 17

Trap Flag



Page § 18

Compare Checksum – DynAD_SingleStep.exe

§ When TF is 1, CPU is switching to Single Step mode, each time CPU 
execute a command will trigger one EXCEPTION_SINGLE_STEP 
exception. And TF will reset to 0 automatically. 



Page § 19

Breakpoint Detection

§ When we debug the program, we usually set a breakpoint 
– breakpoint à x86 command is 0XCC
– if malware detect 0xCC while running, then it will terminate itself

§ How to detect 0xCC?

Can we just scanning for string 0xCC?

CC



Page § 20

Breakpoint Detection – API Breakpoint Detection

§ Method 1: Detect API Breakpoint
– Most (experienced) code reverse engineer set a breakpoint for the following 

API:
• [Process]: CreateProcess, CreateThread, EnumProcessMOdules, 

OpenProcess, TerminateProcess, ShellExecuteA, 
CreateRemoteThread,CrateProcessAsUser, EnumProcess…

• [Memory]: ReadProcessMemory, WriteProcessMemory, VirtualAlloc, 
VirtualProtect, VirtualQuery…

• [File]: CreateFile, ReadFile, WriteFile, CopyFile, CreateDirectory, DeleteFile,
MoveFile, GetFileSize…

• [Register]: RegCreateKeyEx, RegDeleteKey, RegSetValue
• [Network]: WSAStartup, socket, inet_addr, recv, send, HttpOpenRequest

Malware just need to check if the first byte of these functions is 
changed to 0XCC



Page § 21

Breakpoint Detection

§ Method 1: Detect API Breakpoint
– Most (experienced) code reverse engineer set a breakpoint for the following 

API:
• [Process]: CreateProcess, CreateThread, EnumProcessMOdules, 

OpenProcess, TerminateProcess, ShellExecuteA, 
CreateRemoteThread,CrateProcessAsUser, EnumProcess…

• [Memory]: ReadProcessMemory, WriteProcessMemory, VirtualAlloc, 
VirtualProtect, VirtualQuery…

• [File]: CreateFile, ReadFile, WriteFile, CopyFile, CreateDirectory, DeleteFile,
MoveFile, GetFileSize…

• [Register]: RegCreateKeyEx, RegDeleteKey, RegSetValue
• [Network]: WSAStartup, socket, inet_addr, recv, send, HttpOpenRequest

Malware just need to check if the first byte of these functions is 
changed to 0XCC



Page § 22

Breakpoint Detection – Code Checksum Comparison 

CC Checksum

0x12345678

0xD71A5CA2



Page § 23

Compare Checksum – DynAD_Checksum.exe



Page § 24


