
CSC 471 Modern Malware Analysis
Anti-Debugging Technique

Si Chen (schen@wcupa.edu)

Class15

Page § 2

Anti-Debugging

§ Malware authors have always looked for new techniques to stay
invisible. This includes, of course, being invisible on the compromised
machine, but it is even more important to hide malicious indicators and
behavior during analysis.

§ Debugging is the essential part of malware analysis. Every time we need
to drill down into malware behavior, restore encryption methods or
examine communication protocols, we use debuggers.

§ To make the post-detection analysis more difficult, threat actors use
various anti-analysis techniques, one of the more common ones is Anti-
Debugging.

Page § 3

What is Anti-Debugging?

§ Anti-Debugging techniques are meant to ensure that a program is not
running under a debugger, and in the case that it is, to change its
behavior correspondingly.

§ In most cases, the Anti-Debugging process will slow down the process of
reverse engineering, but will not prevent it.

Anti-debugging tricks

Page § 4

Static Anti-Debugging VS. Dynamic Anti-Debugging

Static Dynamic
Difficulty Level Easy, Medium Hard
Key idea Use System Information Reverse and exploit Debugger
Target Detect Debugger Hide it’s own code and data
Time point When debugging started While debugger are running
Defend
Method(s)

API hook, debugger plugin API hook, Debugger Plugin,
Other tools

Example(s) PEB, TEB, Native API, TLS SHE, Break Points (INT3),
Timing Check

Page § 5

Static Anti-Debugging Techniques

§ The debuggee is trying to detect if it being debugged.
– If being debugged -- run some !"#$%"!"&'()*+,'- .,.!//&'%0+'()*+'%)'%+"1$2!%+'
$%,+/34'

Page § 6

Process Environment Block (PEB)

§ The function kernel32!IsDebuggerPresent() determines whether the
current process is being debugged by a user-mode debugger such as
OllyDbg or x64dbg.

§ Generally, the function only checks the BeingDebugged flag of
the Process Environment Block (PEB).

§ The following code can be used to terminate process if it is being
debugged:

Page § 7

Process Environment Block (PEB)

§ What’s Process Environment Block (PEB)?

In computing the Process Environment Block (abbreviated PEB)
is a data structure in the Windows NT operating system family. It is
an opaque data structure that is used by the operating system
internally, most of whose fields are not intended for use by anything
other than the operating system.

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Opaque_data_type

Page § 8

Thread Environment Block (TEB)

§ In computing, the Win32 Thread Environment Block (TEB) is a data
structure in Win32 on x86 that stores information about the currently
running thread.

PEB

Page § 9

Thread Environment Block (TEB)

§ On the user mode basis of a 32-bit window, the FS register points to a
structure called a Thread Environment Block (TEB) or Thread
Information Block (TIB).

Page § 10 FS + GDTR (Global Descriptor Table Register) = Addr of TEB

Page § 11

Check PEB via OllyDbg

Type: MOV EAX, DWORD PTR FS:[30]

Page § 12

Check PEB via OllyDbg

§ Run the command StepIn (F7) or StepOver (F8)
§ Check the EAX value

PEB

Page § 13

BeingDebugged(+0x2) à PEB

§ PEB.BeingDebugged set to
– 1 (TRUE) à Being Debugged
– 0 (FALSE) à Not being debugged

Page § 14

Ldr(+0xC) à PEB

§ When debug a process, it’s heap memory will be filled with some special
values, to show that it’s being debugged.
– Empty heap memory will be filled with 0xFEFEFE

§ PEB.Ldr is a pointer pointing to _PEB_LDR_DATA and
_PEB_LDR_DATA is crated in side the heap memory

Page § 15

Ldr(+0xC) à PEB

§When debugging a process,
it’s heap memory will be filled
with some special values, to
show that it’s being
debugged.
– Empty heap memory will

be filled with 0xFEFEFE
§PEB.Ldr is a pointer pointing

to _PEB_LDR_DATA and
_PEB_LDR_DATA is crated
inside the heap memory

Page § 16

Process Heap(+0x18) à PEB

§ PEB.ProcessHeap is point to a HEAP structure.

§ This HEAP structure can be used as an anti-debugging technique. This first
heap contains a header with fields (ForceFlags, Flags) used to tell the kernel
whether the heap was created within a debugger.

§ Below are the offsets (relative to ProcessHeap) for Windows XP and Windows
7.

https://www.aldeid.com/wiki/Category:Digital-Forensics/Computer-Forensics/Anti-Reverse-Engineering/Anti-Debug

Page § 17

Process Heap(+0x18) à PEB

HEAP.flags(0xC) & HEAP.ForceFlags(0x10)

If running normally (not in debug mode), Heap.Flag(+0xC) is 0x2
and Heap.ForceFlag(0x10)’s value is 0x0

Only works in WinXP

Page § 18

NtBlobalFlag(+0x68) à PEB

When debugged,
PEB.NtGlobal is set to
0x70 Otherwise is 0x0

0x70 =
FLG_HEAP_ENABLE_TA
IL_CHECK (0x10) ||
FLG_HEAP_ENABLE_F
REE_CHECK (0x20) ||
FLG_HEAP_VALIDATE_
PARAMETERS (0x40)

Page § 19

NtBlobalFlag(+0x68) à PEB

When debugged,
PEB.NtGlobal is set to
0x70 Otherwise is 0x0

0x70 =
FLG_HEAP_ENABLE_TA
IL_CHECK (0x10) ||
FLG_HEAP_ENABLE_F
REE_CHECK (0x20) ||
FLG_HEAP_VALIDATE_
PARAMETERS (0x40)

Page § 20

Example: StAD_PEB.exe

Page § 21

