
CSC 471 Modern Malware Analysis
Stack and Stack Frame

Si Chen (schen@wcupa.edu)

Class7



Page § 2

Assembly 101 Example: abexcm1-voiees.exe

§ Assembly 101 Example: abexcm1-voiees.exe
§ Open Assembly 101 Example: abexcm1-voiees.exe in your windows XP 

VM.
§ Use Ollydbg to open the file (Desktop/toys/abexcm1-voiees.exe)

– Dynamic Analysis

https://www.cs.wcupa.edu/schen/security/download/abexcm1-voiees.exe
https://www.cs.wcupa.edu/schen/security/download/abexcm1-voiees.exe
https://www.cs.wcupa.edu/schen/security/download/abexcm1-voiees.exe
https://www.cs.wcupa.edu/schen/security/download/abexcm1-voiees.exe


Page § 3

The Stack

Stack:
• A special region of your computer's memory that stores 

temporary variables created by each functions
• The stack is a "LIFO" (last in, first out) data structure
• Once a stack variable is freed, that region of memory 

becomes available for other stack variables.

Bottom

Top

PUSH

POP

Properties:
• the stack grows and shrinks as functions push and 

pop local variables
• there is no need to manage the memory yourself, 

variables are allocated and freed automatically
• the stack has size limits
• stack variables only exist while the function that 

created them, is running

EBP—Pointer to data on the stack 
ESP—Stack pointer

12E00

13000



Page § 4

The Stack

Stack:
• A special region of your computer's memory that stores temporary variables created 

by each functions
• The stack is a "LIFO" (last in, first out) data structure
• Once a stack variable is freed, that region of memory becomes available for other stack 

variables.



Page § 5

Stack Frame



Page § 6

Stack Frame

§ A stack frame is a frame of data that gets pushed onto the stack. 
§ In the case of a call stack, a stack frame would represent a function call 

and its argument data.



Page § 7

Stack Frame



Page § 8

Stack

§Pass arguments
§Save the return address
§Save local variable



Page § 9

Stack Frame



Page § 10

Stack Frame



Page § 11

Local Variable

§ Limited Register(s) à Store Local Variable in stack
– Use esp and ebp to define a stack frame for current function
– Use relative position of esp or ebp for retrieving and storing data

• e.g. mov eax, [esp+124]

§ Very easy to do recursive call



Page § 12

https://www.slideshare.net/saumilshah/how-functions-work-7776073



Page § 13

https://www.slideshare.net/saumilshah/how-functions-work-7776073



Page § 14

https://www.slideshare.net/saumilshah/how-functions-work-7776073



Page § 15

https://www.slideshare.net/saumilshah/how-functions-work-7776073



Page § 16

https://www.slideshare.net/saumilshah/how-functions-work-7776073



Page § 17

Stack Frame



Page § 18

StackFrame.exe



Page § 19

StackFrame.exe



Page § 20

StackFrame.exe



Page § 21

StackFrame.exe



Page § 22

StackFrame.exe



Page § 23

StackFrame.exe



Page § 24

StackFrame.exe

Create space for ‘a’ and ‘b’ à long à 4 byte



Page § 25

StackFrame.exe

Create space for ‘a’ and ‘b’ à long à 4 byte



Page § 26

StackFrame.exe

Assembly C Type Conversion
DWORD PTR SS:[EBP-4] *(DWORD*)(EBP-4) DWORD (4 byte)
WORD PTR SS:[EBP-4] *(WORD*)(EBP-4) WORD (2 byte)
BYTE PTR SS:[EBP-4] *(BYTE*)(EBP-4) 1 byte

4 Byte memory space at address [EBP-4]



Page § 27

StackFrame.exe



Page § 28

StackFrame.exe



Page § 29

StackFrame.exe



Page § 30

StackFrame.exe



Page § 31

StackFrame.exe



Page § 32

StackFrame.exe

Clean Stack



Page § 33

StackFrame.exe

Clean Stack



Page § 34

StackFrame.exe



Page § 35

StackFrame.exe

Set EAX –> 0
Faster than

MOV EAX,0



Page § 36

Calling Convention



Page § 37

Two Questions

§ Q: When a function finished, how to handle the parameter left in the stack.

§ Q: When a function finished, how change the ESP value?

A: We don’t care…

A: ESP should be restored to the previous value



Page § 38

Standard C Calling Conventions

§ Calling conventions are a standardized method for functions to be 
implemented and called by the machine. 

§ A calling convention specifies the method that a compiler sets up to 
access a subroutine.

§ There are three major calling conventions that are used with the C 
language on 32-bit x86 processors: 
– CDECL

– STDCALL, 
– FASTCALL.



Page § 39

CDECL 

§ The C language, by default, uses the CDECL calling convention
§ In the CDECL calling convention the following holds:

– Arguments are passed on the stack in Right-to-Left order, and return values are 
passed in eax.

– The calling function cleans the stack. This allows CDECL functions to 
have variable-length argument lists.



Page § 40

STDCALL

§ The C language, by default, uses the CDECL calling convention
§ In the CDECL calling convention the following holds:

– Arguments are passed on the stack in Right-to-Left order, and return values are 
passed in eax.

– The calling function cleans the stack. This allows CDECL functions to 
have variable-length argument lists.



Page § 41

STDCALL

§ STDCALL, also known as "WINAPI" (and a few other names, depending 
on where you are reading it) is used almost exclusively by Microsoft as 
the standard calling convention for the Win32 API.
– STDCALL passes arguments right-to-left, and returns the value in eax. 
– The called function cleans the stack, unlike CDECL. This means that 

STDCALL doesn't allow variable-length argument lists.



Page § 42

STDCALL

§ STDCALL, also known as "WINAPI" (and a few other names, depending 
on where you are reading it) is used almost exclusively by Microsoft as 
the standard calling convention for the Win32 API.
– STDCALL passes arguments right-to-left, and returns the value in eax. 
– The called function cleans the stack, unlike CDECL. This means that 

STDCALL doesn't allow variable-length argument lists.

RET 8 è RET + POP 8 Byte



Page § 43

FASTCALL

§ The FASTCALL calling convention is not completely standard across all 
compilers, so it should be used with caution.

§ The calling function most frequently is responsible for cleaning the stack, 
if needed.



Page § 44


