Cla855

CSC 471/583 Topics of Software Security
|A-32 Register & x8b6 ASM

Dr. Si Chen (schen@wcupa.edu)

|A-32 Register

PPPPPP

Intel IA-32 Processor

* [ntel uses IA-32 to refer to Pentium processor family, in order to
distinguish them from their 64-bit architectures.

processor

Performance

sl Pentium® 1995
, 1989 Processor
e 1992

80286 - 1982

8086 - 1978

1995

Page = 3

Register Set

» There are three types of registers:
— general-purpose data registers,
— segment registers,

— status and control registers.

General-pumose registers
31 0

Status and control registers
31 0

Page = 4

Segment registers
15 0

EAX

EBX

ECX

EDX

ESI

EDI

EBP
ESP

EFLAGS
EIP

CS
DS
SS
ES
FS
GS

General-purpose Registers

» The eight 32-bit general-purpose data registers are used to hold
operands for logical and arithmetic operations, operands for address
calculations and memory pointers

Generalpurpose registers 16-bit 32-bit
31 16 15 87 0

@ AH AL AX EAX

4 Bytes BH BL BX EBX
CH CL CX ECX

DH DL DX EDX

BP ESI

3| EDI

DI EBP

SP ESP

Page = 5

— EAX—Accumulator for operands and results data.

— EBX—Pointer to data in the DS segment.

— ECX—Counter for string and loop operations.
— EDX—I/QO pointer.

1.

il

Page = 6

We use these four registers when we perform arithmetic
operations (ADD, SUB, XOR, OR) -- store constant or variable’s
value.

Some assembly operations (MUL, DIV, LODS) directly operate
these register and altered the value when finished.

ECX is used for loop count > decrease 1 after each loop

EAX is used for storing the return value of a function (Win32 API)

» ESI—Pointer to data in the segment pointed to by the DS register; source
pointer for string operations.

» EDI—Pointer to data (or destination) in the segment pointed to by the ES
register; destination pointer for string operations.

= EBP—Pointer to data on the stack.
= ESP—Stack pointer.

\

PUSH, POP, CALL, RET

Page =7

Segment Registers

» There are six segment registers that hold 16-bit segment selectors. A
segment selector is a special pointer that identifies a segment in memory.

— CS: code segment register
— SS: stack segment register
— DS, ES, FS, GS: data segment registers

ACCESS | LIMIT
{ BASE ADDRESS - CODE]
|
ACCESS | LIMIT
BASE ADDRESS - STACK |
I
CS
sSS L ACCESS | LIMIT
DS l BASE ADDRESS - DATA]
' J
ES .
FS ‘ _| AcCEss | LimiIT 4
GS | BASE ADDRESS . DATA l
. .\('('l‘?\'.\i; LIMIT _ DATA :
BASE ADDRESS l
Page = 8 «| ACCESS [Lovrr - DATA |
BASE ADDRESS

31 0

Status and Control Registers EFLAGS

EIP

The 32-bit EFLAGS register contains a group of status flags, a control
flag, and a group of system flags.

3130202827 26252423222120191817161514131211100 8 7 8 5 4 3 2 1 O
AVIvIalv]r]. x| © [o]o]i | al-lel, e
\ : | s|z
elofejojofojoioimols titicimle|2(T| B [F|F|F|F|F|F|°|F|°|F|"|F
‘ L

X ID Flag (1D} | \

X Virtual Interrupt Pending (VIP)

X Virtual Interrupt Flag (VIF) !
JCC X Alignment Check (AC)
X Virtual-8086 Mode (VM)
X Resume Flag (RF}
X Nested Task (NT)
I/O Privilege Level (IOPL)
Overflow Flag (OFH
Direction Flag (DF})
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF) |
Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF) —}

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

XOW |WWWWwmXXOWwX

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Page = 9

EFLAGS Register

Status and Control Registers

313020282726252423222120191817161514131211102 8 7 8 5 4 3 2 1 O

Change to ‘1 if: vIv]aly 18 lelali l+lsl 2
« Signed integer overflow 0000000000'3;,;6"{4?0'? v S EEHEEHEHENE
« Change in MSB (Most Significant Bit) |
X 1D Flag (ID3 |
Virtual Interrupt Pending (VIP)

X

X Virtual Interrupt Flag (VIF)
X Alignment Check (AC)

X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X 1/O Privilege Level (IOPL)
S Overflow Flag (OFH

C Direction Flag (DF})

; Interrupt Enable Flag (IF)
S

S

S

S

S

S

C

X

Change to ‘1’ if:
e Calculation resultis 0

Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF) |

Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF) —}

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

Change to ‘1’ if:

* unsigned integer overflow Reserved bit positions. DO NOT USE.
Always set to values previously read.

EFLAGS Register

Page = 10

Status and Control Registers EFLAGS

EIP

EIP Register (Instruction Pointer)

The EIP register (or instruction pointer) can also be called "program
counter."

It contains the offset in the current code segment for the next instruction to
be executed.

It is advanced from one instruction boundary to the next in straight-line code

or it is moved ahead or backwards by a number of instructions when
executing JMP, Jcc, CALL, RET, and IRET instructions.

Page = 11

X806 ASM

Page = 12

* Move reg/mem value to reg/mem
— mov A, B is "Move B to A" (A=B)
— Same data size

mov eax, 0x1337

mov bx, ax

mov [esp+é|, bl

Page = 13

MOVZX /| MOVSX

* From small register to large register
» Zero-extend (MOVZX) / sign-extend (MOVSX)

» Example: movzx ebx, al

When copy a smaller value into a larger
destination, MOVZX instruction fills (extends) the
upper half of the destination with zeros

0 10001111 | Source (bl)

|

00000000 | 10001111 | Destination (ax)

MOVSX fills the upper half of the destination with
a copy of the source operand's sign bit

0001111 | Source (bl)

/

/,
%4

Page = 14

11111111 10001111 Destination (ax)

More About Memory Access

= mov ebx, [esp + eax * 4] Intel
» mov (%esp, %eax, 4), %ebx AT&T

= mov BYTE [eax], OxOf
You must indicate the data size: BYTE/WORD/DWORD

Page = 15

ADD / SUB

= ADD /SUB

= Normallly "reg += reg" or "reg += imm"

» Data size should be equal
— ADD eax, ebx
— sub eax, 123

— sub eax, BL ; lllegal

Page = 16

INC / DEC

» inc, dec — Increment, Decrement

* The inc instruction increments the contents of its operand by one.
The dec instruction decrements the contents of its operand by one.

= Syntax
inc <reg>
inc <mem>
dec <reg>
dec <mem>

= Examples
DEC EAX — subtract one from the contents of EAX.

INC DWORD PTR [var] — add one to the 32-bit integer stored at
location var

Page = 17

SHL / SHR / SAR

= Shift logical left / right
= Shift arithmetic right

= Common usage: SHL eax, 2 (when calculate memory address)

Page = 18

Jump

= Unconditional jump: jmp
» Conditional jump: je/jne
and ja/jaeljb/jbeljgl/jgeljlijle ...
= Sometime with "cmp A, B” -- compare these two values and set eflags

= Conditional jump is decided by some of the eflags bits.

ref -

: | Unsigned and Signed Jumps.
The JMP Instruction lJ metgnec andignec Jumps
| i

* JMP (jump) instruction causes an unconditional jump

* Syntaxis: 8 = F= Crdiian Umsigned Soed
JMP destination/target_label
* JMP can be used to get around the range restriction [126/127 byte] 1 sare< dst B I
* Flags—no change soae <=det JBE JIE
TOP: | | saresedt INEJND) INEJAND)
TOP |
; the loop body contains so many instructions ‘.I sauate= d=st JEJD JEJAD
; body of the loop, say 2 instructions ; thatlabel TOP is out of range for JNZ. Solution is-
DEC cX : decrement counter DEC CX souce >=det JAE CE
INZ TOP ; keep loopingif CX >0 INZ BOTTOM I
MOV AX, BX IMP EXIT saaee> dast JA JG
BOTTOM:
IMP TOP E
EXIT:
MOV AX, BX l
—Section6-3:Assembly tanguage Programming— !
‘! 6
1

Page = 19

Jump

= ja/jaeljbl/jbe are unsigned comparison

= jg/jgeljl/jle are signed comparison

. |Unsigned and Signed Jumps.
-

F B Cdnxlitian Umsigyed Sioyad
. ; saate << dest JB J
saute <=dst JBE= JE

- ’ sarce ~det JNEJNY) INEJIND
l.I souae = dst JEJSD JEJD
. sauae >=dt JAE JCE

I sae > dst JA JG
=

|
Page = 20 ,
age ! ' ()

= cmp — Compare

= Compare the values of the two specified operands, setting the condition
codes in the machine status word appropriately. This instruction is
equivalent to the sub instruction, except the result of the subtraction is
discarded instead of replacing the first operand. Syntax
cmp <reg>,<reg>
cmp <reg>,<mem>
cmp <mem>,<reg>
cmp <reg>,<con>

» Example
cmp DWORD PTR [var], 10
jeq loop

= |[f the 4 bytes stored at location var are equal to the 4-byte integer
constant 10, jump to the location labeled /oop.

Page = 21

®e

& A

Page = 22

