
CSC 497/583 Advanced Topics in Computer Security
Modern Malware Analysis
Static Analysis, PE Format

Si Chen (schen@wcupa.edu)

Class3

Page § 2

Course Outline

§ Static Analysis
– Cryptographic Hash
– Anti-Virus Scanning

– Strings
– PE file
– Packer and Cryptor

§ PE Format

Page § 3

Static Analysis

Page § 4

Fingerprinting the Malware -- Cryptographic Hash

Page § 5

Fingerprinting the Malware

§ Fingerprinting involves generating the cryptographic hash values for the
suspect binary based on its file content.

§ Same cryptographic hashing algorithms:
– MD5
– SHA1
– SHA256

§ Why not just use the file name?
– Ineffective, same malware sample can use different filenames, cryptographic

hash is calculated based on the file content.

§ File hash is frequently used as an indicator to share with other security
researchers to help them identify the sample.

Page § 6

Tools and Python code

Page § 7

Strings

§ Finding Strings [1]

– A string in a program is a sequence of characters such as “the.”
– A program contains strings if it prints a message, connects to a URL, or copies

a file to a specific location.
– Searching through the strings can be a simple way to get hints about the

functionality of a program.
• For example, if the program accesses a URL, then you will see the URL

accessed stored as a string in the program.
– You can use the Strings program to search an executable for strings, which are

typically stored in either ASCII or Unicode format.

[1]. Practical Malware Analysis, page 11

Page § 8

Static analysis (myhack.dll)

Page § 9

Static analysis (myhack.dll)

Sometimes the strings detected by the
Strings program are not actual strings.

Page § 10

strings in Linux and flare-floss

§ FireEye Labs Obfuscated String Solver
– Many malware authors evade heuristic detections by obfuscating only key

portions of an executable
• These portions are strings and resources used to configure domains,

files, and other artifacts of an infection
– The FireEye Labs Obfuscated String Solver (FLOSS) uses advanced static

analysis techniques to automatically deobfuscate strings from malware
binaries.

Page § 11

Packed and Obfuscated Malware

• Malware writers often use packing or obfuscation to make their
files more difficult to detect or analyze.

• Obfuscated programs are ones whose execution the malware
author has attempted to hide.

• Packed programs are a subset of obfuscated programs in which the
malicious program is compressed and cannot be analyzed.

• Both techniques will severely limit your attempts to statically analyze
the malware.

Page § 12

Packed and Obfuscated Malware

Page § 13

Packers and Cryptos

Page § 14

Portable Executable (PE) file

§ A Portable Executable (PE) file is the standard binary file format for an
Executable (.exe) or DLL under Windows NT, Windows 95, and Win32.

Page § 15

Portable Executable (PE) file

§ PE formatted files include:
– .exe, .scr (executable)
– .dll, .ocx, .cpl, drv (library)

– .sys, .vxd (driver files)
– .obj (objective file)

§ All PE formatted files can be executed, except obj file.
– .exe, .scr can be directly executed inside Shell (explorer.exe)
– others can be executed by other program/service

§ PE refers to 32 bit executable file, or PE32. 64 bit executable file is
named as PE+ or PE32+. (Note that it is not PE64).

Page § 16

PE Example – Notepad.exe

Page § 17

Load PE file (Notepad.exe) into Memory

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL
Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
00000000
00000040

000000E0

000001D8
00000200
00000228

00000400

00007C00

00008400

00010800

<File> <Memory>

8400

800

7800

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL

Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
01000000
01000040

010000E0

010001D8
01000200
01000228

01001000

01009000

0100B000

01014000

8314

1BA8

7748

Notepad.exe

Page § 18

VA & RVA

§ VA (Virtual Address): The address is called a “VA” because Windows
creates a distinct VA space for each process, independent of physical
memory. For almost all purposes, a VA should be considered just an
address. A VA is not as predictable as an RVA because the loader might
not load the image at its preferred location.

§ RVA (Relative Virtual Address): The address of an item after it is loaded
into memory, with the base address of the image file subtracted from it.
The RVA of an item almost always differs from its position within the file
on disk (file pointer).

RVA + ImageBase = VA

In 32bit Windows OS, each process has 4GB virtual memory
which means the range of VA is: 00000000 - FFFFFFFF

Page § 19

DOS Header

The first 2 letters are always the
letters "MZ", the initials of Mark
Zbikowski, who created the first linker
for DOS. To some people, the first few
bytes in a file that determine the type
of file are called the "magic number,"

Page § 20

DOS Header

value for e_lfanew à ?
E0 00 00 00

long à 32 bit à 32/8 = 4 Bytes

8 bits = 1 Byte
32bits = 32 / 8 = 4Bytes = 0x00000000 – 0xFFFFFFFF
64bits = 8 Bytes

Page § 21

Byte Order

Page § 22

Little endian

§ IA-32 processors use "little endian" as their byte order. This means that
the bytes of a word are numbered starting from the least significant byte
and that the least significant bit starts of a word starts in the least
significant byte.

Page § 23

Byte Order

Page § 24

LittleEndian.exe

Page § 25

LittleEndian.exe

Page § 26

LittleEndian.exe

Page § 27

DOS Header

e_lfanew à 000000E0

Page § 28

DOS stub

https://virtualconsoles.com/online-emulators/dos/

https://virtualconsoles.com/online-emulators/dos/

Page § 29

NT Header

https://docs.microsoft.com/en-
us/windows/desktop/api/winnt/

Page § 30

NT Header

Page § 31

Section Header

Name Privilege
.code Executable, read
.data Non-Executable, read/write

.resource Non-Executable, read

Page § 32

Section Header

Page § 33

Section Header

Members Meaning
VirtualSize The total size of the

section when loaded into
memory, in bytes.

VirtualAddress The address of the first
byte of the section when
loaded into memory (RVA)

SizeOfRaw Data The size of the section
data on disk, in bytes.

PointerToRawData The address of the first
byte of the section on

disk.
Characteristics The characteristics of the

image.

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL
Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
00000000
00000040

000000E0

000001D8
00000200
00000228

00000400

00007C00

00008400

00010800

<File> <Memory>

8400

800

7800

NULL

Section (.rsrc)

NULL

Section (.data)

NULL

Section (.text)

NULL

Section header (.rsrc)
Section header (.data)
Section header (.text)

NT header

DOS stub
DOS header

Offset
01000000
01000040

010000E0

010001D8
01000200
01000228

01001000

01009000

0100B000

01014000

8314

1BA8

7748

Notepad.exe

https://docs.microsoft.com/en-
us/windows/desktop/api/winnt/ns-winnt-
_image_section_header

Page § 34

Section Header

Page § 35

Inspecting PE Header Information in Linux

Page § 36

Inspecting PE Header Information

Page § 37

Examining PE Section Table and Sections

§ https://hub.docker.com/r/remnux/pescanner/

Page § 38

