
Lab4: Stuxnet (Participation-only)

Objectives and Targets

Stuxnet is a malicious computer worm, first uncovered in 2010. Thought to
have been in development since at least 2005, Stuxnet targets SCADA
systems and is believed to be responsible for causing substantial damage to
Iran’s nuclear program.

In this lab, we’ll examine Stuxnet’s footprint in memory using Volatility 2.0
(Link). Please follow the instructions and answer all questions.

Remote Login:

Please use secure shell (SSH) software to login my remote linux server
(ubuntu).

IP: 35.232.130.9
UserName: lab4
Password: wcupa

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

title

Target 1: Hollow Process Injection:

Step 1:
Type vol.py -f stuxnet.vmem pstree , it’ll shows all running
processes.

A normal Windows XP installation has just one instance of lsass.exe that
the Winlogon process creates when the system boots. However, the process
tree reveals that the two new lsass.exe instances were both created by
Services.exe.

Q1: Please write down the process IDs (PIDs) for the fake lsass.exe? (1
Point)

Step 2: In fact, Stuxnet uses Hollow Process Injection to switch the code of
a legit running process with malicious code.

As a result of being hollowed, the virtual address descriptor (VAD)
characteristics for the region are drastically different. Only the legitimate one
still has a copy of the lsass.exe file mapped into the region.

Please type vol.py -f stuxnet.vmem vadinfo -p 1928,868,680 -
-addr=0x1000000

Q2: Please find the difference of between the legit lsass.exe VAD and
the fake one and write down the differences(1 Point)

Target 2: API Hooking:

Based on Symantec report (Link, page 13), Stuxnet has hooked Ntdll.dll to
monitor for requests to load specially crafted file names. These specially
crafted filenames are mapped to another location instead — a location
specified by Stuxnet.

https://www.wired.com/images_blogs/threatlevel/2010/11/w32_stuxnet_dossier.pdf

The functions hooked for this purpose in Ntdll.dll are:

ZwMapViewOfSection
ZwCreateSection
ZwOpenFile
ZwCloseFile
ZwQueryAttributesFile
ZwQuerySection"

Step 1:
Type vol.py -f stuxnet.vmem apihooks , it’ll shows all hooked APIs. I
attached the result for ZWQuerySection Function.

API Hook Information for ZWQuerySection Function

For ZwOpenFile function, the hook address is 0x7c90004c . Stuxnet
uses the “syscall” hooking technique instead of the more common
Inline/IAT/EAT hooking. To interactively explore code around the hook
address, use the volshell command. This time we’ll use it to follow the
flow of execution when a hooked API is called.

First you need to break into the shell and switch into the context of a process
that has been hooked. Then navigate to the hooked API. I’ll start with
ZWQuerySection which is at 0x7c90004c .

Step 2:
Type vol.py -f stuxnet.vmem volshell
Inside volshell, Type cc(pid=940)
Type dis(0x7c90004c)

At 0x7c90005d there is a CALL to 0x7c900066 . But according to the
disassembly, 0x7c900066 is in the middle of the instruction that starts at
0x7c900062 . This is an anti-disassembling trick that Stuxnet uses.

Let’s disassemble 0x7c900066

Type dis(0x7c900066)

The first two lines shows POP EDX; JMP DWORD [EDX] . Stuxnet plays a
little tricks here:

1. When the CALL at 0x7c90005d is executed, its return address
(0x7c900062) is pushed onto the stack.

2. The POP EDX instruction at 0x7c900066 then removes that value from
the stack and places it in EDX.

3. At 0x7c900067 , EDX is dereferenced and called. So the pointer being

dereferenced is stored in 0x7c900062 .

Q3: Please draw three figures with stack and EDX register to show the
little tricks that Stuxnet did. Label it with 1,2,3 (6 Points)

At address 0x7c900062 , the first 4 byte of data is being used as the
memory address of the next hop (JMP DWORD [EDX]) which I highlighted
in the following picture (f200bf00)

Q4: This value is stored using the little endian format, please convert
this value back and write down the actual memory address.(1 point)

Step 3:

Let’s disassemble the memory address that contains the rootkit (the answer
for Q4, you need to convert f200bf00 to get the address).
Type dis(MEMORY_ADDRESS_FROM_Q4)
It shows the assembly code of the rootkit.

The instructions highlighted show how the malware eventually calls the
requested system service. It uses the IDT instead of the SSDT. Although
Windows itself doesn’t use the IDT for system service dispatching anymore

(that stopped with Windows 2000), the IDT was still kept around for
backward capability.

Check slides (ch10.pptx) answer the following questions:
Q5: What’s the meaning of INT 0x2e ? (1 point)
Q6: What’s IDT? What’s SSDT? (2 points)

Step 4:
Q7: Find the real memory address of the rest of system API

Repeat Step 1 and 2, and reveal the real memory address for
* ZwCreateSection
* ZwOpenFile
* ZwCloseFile
* ZwQueryAttributesFile
(4 points)

Target 3: Kernel Forensics (Bonus 6 points):

Stuxnet loads two modules: maxnet.sys and mrxcls.sys. The first one installs
a file system registration change callback to receive notification when new
files systems become available (so it can immediately spread or hide files).
The second one installs an image load callback, which is uses to inject code
into processes when they try to load other DLL.

Please use Volatility, read the command reference (Link). Find a way to find
the malicious kernel drivers, kernel callbacks and point out the malicious
devices inside memory.

Deliverables:
A detailed project report (lab4_report.pdf) in PDF format to describe what
you have done, including screenshots and code snippets.

Submission
Check lab due date on the course website. Late submission will not be
accepted.
The assignment should be submitted to D2L directly.
No copy or cheating is tolerated. If your work is based on others', please

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

give clear attribution. Otherwise, you WILL FAIL this course.

