Lab2: Stack and Stack Frame in Linux
(10 Points)

Stack Pointer > top of stack
Locals of
DrawLine stack frame
for
Frame Pointer ——» .
Return Address DrawLine
subroutine
Parameters for
DrawLine
Locals of
stack frame DrawSquare
for | Return Address
DrawSquare
subroutine Parameters for
DrawSquare

Objectives and Targets

The stack is a segment of memory where data like your local variables and
function calls get added and/or removed in a last-in-first-out (LIFO) manner.
When you compile a program, the compiler enters through the main function
and a stack frame is created on the stack. A frame, also known as an
activation record is the collection of all data on the stack associated with one
subprogram call. The main function and all the local variables are stored in an
initial frame.

In this lab, you'll re-do the experiment that | did in class, but in a Linux
environment.

Step 1: In a Linux environment (e.g. Manjaro environment Link). Download the
lab2.c Link.


https://www.cs.wcupa.edu/schen/csc497/download/M64.ova
https://www.cs.wcupa.edu/schen/csc497/lab2/lab2.c

1 #include <stdio.h>

3 int add3(int a, int b, int c)
o

6 }

return a + b + c;

int a
int d
return 0;

% int main(){

source code for lab2

Step 2: Compile the code with gcc by typing the following command in
your terminal.

gcc -m32 —-no-pie -o lab2 lab2.c
Step 3: Use gdb to reverse engineer the output ELF file.
gdb lab2

quakeOday@quakeOday-pc gdb lab2
GNU gdb (GDB) 8.2.1
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86 64-pc-linux-gnu".
Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from lab2...(no debugging symbols found)...done.

screenshot for gdb

P.S. If you're not familar with gdb , now it's the best time to check this
tutorial Link.


http://www.unknownroad.com/rtfm/gdbtut/

Step 4: Disassemble the main function by typing the following command
and answer the following question(s):

disas main

disas main

Dump of assembler code for function main:
0x08049172 <+0>: push  ebp
0x08049173 <+1>: mov ebp,esp
0x08049175 <+3>: sub esp,0x10
0x08049178 <+6>: call 0x80491b2 < x86.get pc thunk.ax>
0x0804917d <+11>: add eax,0x2e83
0x08049182 <+16>: mov DWORD PTR [ebp-0x10],0x5
0x08049189 <+23>: mov DWORD PTR [ebp-0xc],0x6
0x08049190 <+30>: mov DWORD PTR [ebp-0x8],0xa
0x08049197 <+37>: push DWORD PTR [ebp-0x8]
0x0804919a <+40>: push  DWORD PTR [ebp-0xc]
0x0804919d <+43>: push  DWORD PTR [ebp-0x10]
0x080491a0 <+46>: call 0x8049156 <add3>
0x080491a5 <+51>: add esp, 0xc
0x080491a8 <+54>: mov DWORD PTR [ebp-0x4],eax
0x080491ab <+57>: mov eax, 0x0
0x080491b0 <+62>: leave
0x080491b1l <+63>: ret

End of assembler dump.

Assembly code for main function

Q1: What's the meaning of the first three lines (1 point):

0x08049172 <+0>: push ebp
0x08049173 <+1>: mov ebp, esp
0x08049175 <+3>: sub esp,0x10

Q2: What's the meaning of these three lines (1 point):

0x08049182 <+16>: mov DWORD PTR [ebp-0x10],0x5
0x08049189 <+23>: mov DWORD PTR [ebp-0xc],0x6
0x08049190 <+30>: mov DWORD PTR [ebp-0x8],0xa

Q3: What's the meaning of these four lines (1 point):

0x08049197 <+37>: push DWORD PTR [ebp-0x8]
0x0804919a <+40>: push DWORD PTR [ebp-0xc]
0x0804919d <+43>: push DWORD PTR [ebp-0x10]



0x080491a0 <+46>: call 0x8049156 <add3>

Step 5: Disassemble the add3 function by typing the following command
and answer the following question(s):

disas add3

disas add3
Dump of assembler code for function add3:
0x08049156 <+0>: push  ebp
0x08049157 <+1>: mov ebp,esp
0x08049159 <+3>: call 0x80491b2 < x86.get pc thunk.ax>
0x0804915e <+8>: add eax, 0x2ea2
0x08049163 <+13>: mov edx,DWORD PTR [ebp+0x8]

0x08049166 <+16>: mov eax,DWORD PTR [ebp+0xc]
0x08049169 <+19>: add edx, eax
0x0804916b <+21>: mov eax,DWORD PTR [ebp+0x10]
0x0804916e <+24>: add eax,edx
0x08049170 <+26>: pop ebp
0x08049171 <+27>: ret

End of assembler dump.

Assembly code for add3 function

Q4: What's the meaning of the first two lines (1 point):

0x08049156 <+0>: push ebp
0x08049157 <+1>: mov ebp, esp

Q5: What's the meaning of the last two lines (1 point):

0x08049170 <+26>: pop ebp
0x08049171 <+27>: ret

Q6: Which register are being used to store the summation
result (a+b+c)? Why?(2 points):

Q7: Show me how the stack looks like (all data, including the
stack frame of the main function) when the computer
executing the following assembly code (3 points):

0x0804916e <+24>: add eax,edx



Deliverables:

e A detailed project report (lab2_report.pdf) in PDF format to describe what
you have done, including diagrams and code snippets (if needed).

Submission

® Check lab due date on the course website. Late submission will not be
accepted.

® The assignment should be submitted to D2L directly.

® Your submission should include two separated files (lab2_report.pdf)

® No copy or cheating is tolerated. If your work is based on others', please
give clear attribution. Otherwise, you WILL FAIL this course.



