
CSC 496: iOS App Development
SpriteKit (5): Handling Collisions and Contact events

Si Chen (schen@wcupa.edu)

Class23

Page § 2

Pokemon2D game

Page § 3

Use the Scene Editor to build 2D games

§ In this project, we will use the Scene Editor to build a 2D game.

§ The Scene Editor is a built-in feature of Xcode that allows us to create SpriteKit
nodes and assign values to them.

Page § 4

Create a new Pokemon2D game project

Page § 5

Clean up the default template

Delete Action.sks
Do NOT delete the GameScene.sks

Page § 6

Clean up the default template

In GameScene.swift

1. Remove all of the code in
the sceneDidLoad() method,
leaving only the line
self.lastUpdateTime = 0

2. Remove all of the code in
the touchdown(),
touchMoved() and
touchUp() methods

3. Remove the If statement
inside the touchesBegan()
method.

4. Remove the label and
spinnyNode properties on
the top

<-- The final code should look
like this

Page § 7

Adding the Assets

Download assets from class
website,

Drag and drop them into the
Assets folder

Page § 8

Use Scene Editor to Add nodes

Click GameScene.sks

Page § 9

Use Scene Editor to Add nodes

1. Delete the default “Hello world” Node
2. Click the “+” sign
3. Drag and drop the “Color Sprite” to the Scene

Page § 10

Use Scene Editor to Add nodes

1. Delete the default “Hello world” Node
2. Click the “+” sign
3. Drag and drop the “Color Sprite” to the Scene

Page § 11

Use Scene Editor to Add nodes

Page § 12

Use Scene Editor to Add nodes

§ Change texture to “background_grass”
§ Set the position to x: 0 and y: 0

Page § 13

Running it

Page § 14

Adding other nodes

Right click the SKSpriteNode (background)
and lock it

Drag “Empty” to the scene

Page § 15

Adding other nodes

Add four more “Color Sprite” to the Scene and drag them under the
SKNode (to group them up)

Page § 16

Adding other nodes

Change the texture of all four Color Sprite Nodes to “arrow”

Page § 17

Adding other nodes

§ adjust the size and rotation to make it like an on-screen
controller (directional pad, aka D-Pad)

Page § 18

Adding other nodes

Add another Color Sprite Node and change to texture to “player_back”
And change it’s name to controller_stop

Page § 19

Adding other nodes

§ Finally, add another Color Sprite Node (the player) and change the texture
to “player_up”. You can adjust the size if you want.

Page § 20

Change D-pad nodes’ name

change the ”name” of the d-pad button (arrow)’s name to
controller_up, controller_down, controller_left, and controller_right
accordingly

Page § 21

Run the game

Page § 22

Use the Scene Editor to Add Physics

Click the Player node, change the “Body Type” to Bounding Circle, select “Dynamic” and
deselect the allows rotation and affected by gravity options.
Change Fraction, restitution, Lin. Damping and Ang. damping to 0.
Set Category mask to 1, collision mask to 0, the field mask to 0 and the contact mask to 0

Page § 23

Create a Player class

Page § 24

Create a Player class

Page § 25

Assign Player node to the Player class

Page § 26

Assign Player node to the Player class

Page § 27

Move the player using Physics

§ Open GameScene.swift file, override the didMove() method and update
the touchdown() method:

Page § 28

Run and test the game

Page § 29

Move the player use the Velocity method

Page § 30

Exercise: 2D RPG Game

1.Add a new node – “tree” – to the game (the image can be downloaded from
class website).

2.Use multiple tree nodes to create a maze that the player cannot pass through.
(Hint: Set the Category Mask and Collision Mask for both the player and the tree
node.)

3.Add a Pokémon node (node name: pokemon), and when the player hits the
Pokémon, it will print "Player hit the Pokémon" in the console.

Tasks:
You can either start a new project or download Pokemon2DII from website

https://d2l.wcupa.edu/d2l/le/content/3444715/viewContent/35000531/View

Page § 31

Solution

§ In SpriteKit, handling collisions and contact events requires correctly setting the
categoryBitMask, collisionBitMask, and contactMask properties.

§ These properties need to be configured to ensure the correct response when
the player node collides with the tree node.

Player Node:
•Category Bit Mask: This is the unique identifier used to identify the node.
You have already set this to 1.
•Collision Bit Mask: Determines which other nodes it will collide with.
•Contact Mask: Determines which nodes to notify upon contact. This is
often the same as the collisionBitMask but can be adjusted as needed.

Page § 32

Solution

Tree Node:
•Category Bit Mask: This needs to match the collisionBitMask and/or
contactTestBitMask of the Player Node. So, you can set this to 3.
•Collision Bit Mask: This determines with which other nodes the tree node
physically collides. To make the player stop upon collision, this should be set
to 1 (matching the categoryBitMask of the Player Node).
•Contact Test Bit Mask: This determines which nodes to notify when it
comes in contact with other nodes. You can set this based on whether you
need to receive notifications upon contact. If you need to receive collision
notifications, it should be set to 1.

Page § 33

Solution

§ To implement a feature where the player node prints "player touched
pokemon" in the terminal upon touching a new node named pokemon, follow
these steps:

§ Setting Masks

– Firstly, you need to set appropriate categoryBitMask, collisionBitMask, and
contactTestBitMask for the pokemon node. Assuming the player node's
categoryBitMask is still 1, you can set them as follows:

1. pokemon's categoryBitMask: Set this to a unique value, such as 3.

2. pokemon's collisionBitMask: If you don't want the player to physically collide with
the pokemon (i.e., pass through instead of stopping), this should be set to 0.
Otherwise, set it to 1.

3. pokemon's contactTestBitMask: To detect contact between the player and the
pokemon, this mask should be set to 1 (the player's categoryBitMask).

Page § 34

Solution

Writing Collision Detection Code

§ You need to implement the SKPhysicsContactDelegate protocol method to detect
collisions and set the contactDelegate property of the physics world in your scene
(usually a subclass of SKScene).

§ Setting the Delegate: In the initialization method of your scene (GameScene.swift), set the
contactDelegate of the physics world (similar to what we did in Pikachu Project):

Page § 35

Solution

§ Implementing the didBegin(_:) Method: Implement the didBegin(_:) method of
the SKPhysicsContactDelegate protocol to detect contact events:

This code will be called whenever any two physics bodies begin contact. By checking the
names of the nodes associated with these bodies, you can determine if it's the player and
pokemon nodes that have made contact.
Make sure your nodes are properly named (e.g., the player node's name property is set to
"player", the pokemon node's name property is set to "pokemon") for the above code to
work correctly.

Page § 36

Final Project (40%)

§ Create a 2D Role-Playing (RPG) Pokémon game using SpriteKit and demonstrate
it on your iPad by recording a video.

• The player can move around in the game world and capture random Pokémon
(auto-generated).

• Grading Criteria:
• Use SpriteKit with Scenes and Nodes to design the game world (15%).
• Include an on-screen controller to move the player and a camera to track the player

(10%).
• Utilize the Entity-Component Design Pattern to add Collectibles and Physics to your

game (10%).
• Add background music and sound effects (5%).
• Track and display all Pokémon captured by the user (Bonus 5%).

• You need to submit the following on D2L:
• Xcode Project (including both project settings file and source code).
• A video of your game demo.

Page § 37

