
CSC 496: iOS App Development
Views in SwiftUI

Si Chen (schen@wcupa.edu)

Class17



Page § 2

New SwiftUI View

§ To create a new view in SwiftUI, you start by importing the SwiftUI 
package and then defining a new struct that conforms to the View 
protocol. 

§ Inside the struct, you'll implement the body computed property, which 
describes the view's content and layout.

§ Here's a basic example to demonstrate creating a new view in SwiftUI:



Page § 3

New SwiftUI View

§ Define a New Struct: Create a new Swift struct and make it conform to the View 
protocol.

§ Implement the Body: Within the struct, you'll need to implement a body 
computed property. This is where you define what your view looks like.

§ To use MyNewView inside another view, you would do something like this:



Page § 4

Structuring Views

§ In SwiftUI, it's a good practice to 
structure your views by breaking 
them down into smaller, 
reusable components.

§ For example, suppose you have 
a view that displays user 
information. This view could 
consist of smaller views: one for 
the user's avatar, one for the 
username, and one for the 
user's bio.



Page § 5

views



Page § 6

NavigationView



Page § 7

Lab3: Build an app with API and third-party library（Group Project)

§ Assignment Requirements:

1.API Selection: Choose an API for integration from https://github.com/public-apis/public-
apis. Alternatively, you may opt for any other API that does not necessitate 
authentication.

2.Data Fetching: Develop an application capable of fetching data from the chosen API. Your 
application should retrieve at least one property or data field from the API.

3.User Interface (UI): Construct a user interface to display the fetched data. Implement 
features that allow the user to initiate new data requests. For example, if you select the 
Weather API, the interface should enable the user to specify a state (like PA or NY) for 
which to fetch data.

4.Dynamic Imagery: Incorporate at least one changeable image in the application's UI. The 
image should update based on the data retrieved from the API. For instance, the image 
could turn red if the fetched daily temperatures exceed a certain threshold.

5.Library Usage: Utilize at least one third-party library in the development of your 
application.

§ Bonus Criteria:

• Asynchronous Programming: Earn a 2 points bonus if you implement asynchronous 
programming using async/await for data fetching and handling.

e.g., changeable Image of Weather API

https://github.com/public-apis/public-apis
https://github.com/public-apis/public-apis


Page § 8


