
CSC 496: iOS App Development
Swift Fundamentals: Fetching Data from APIs

Si Chen (schen@wcupa.edu)

Class13



Page § 2



Page § 3



Page § 4



Page § 5

Fetching data from APIs

§ Most iOS app needs to interact with the internet, whether it's fetching images 
from a server, communicating with a database, or accessing various services. 
You do all of these via APIs (Application Programming Interfaces)

API Example: https://pokemon.wcpc.fun/id/1



Page § 6

URL and URLComponents

§ A URL (Uniform Resource Locator) is basically the address of a particular 
resource on the internet. 

§ In Swift, we have the URL and URLComponents classes that let's us work with 
URLs.

§ URL is straightforward, and you typically use it to create a URL from a String like 
so:

§ URLComponents, however, is more flexible. It represents the components of a 
URL and allows you to construct and manipulate URLs more granularly.



Page § 7

URL and URLComponents

Note: In the Swift programming language, the ! symbol is used for force-
unwrapping an optional value.

However, if urlComponents.url is nil, attempting to force-unwrap it will result 
in a runtime error. Typically, using optional binding or other safer methods of 
unwrapping is a better choice. For instance, you could do the following: 



Page § 8

URLSession

§ URLSession is Swift's primary API for networking. With it, you can send and 
receive data, upload and download files, and do much more. Here's how you can 
fetch data from a URL:



Page § 9

HTTP Methods (GET, POST, PUT, DELETE)

• HTTP methods define what action we want to perform to the resource. The 
most common methods you'll interact with are GET, POST, PUT, and DELETE.

• GET: To fetch data.

• POST: To send data.
• PUT: To update existing data.

• DELETE: To remove data.

§ You can specify the HTTP method of your request like so:



Page § 10

HTTP Status Codes

• HTTP status codes are three-digit numbers returned by servers to 
indicate the status of a web activity. These status codes are divided into 
five classes:
• 2xx (Success): The action was received, understood and accepted.

• 3xx (Redirection): Further action must be taken to complete the request.

• 4xx (Client Error): The request contains bad syntax or cannot be fulfilled.

• 5xx (Server Error): The server failed to fulfill a seemingly valid request.

§ For example, a commonly seen status code is 200, which means the 
request has succeeded, or 404, which means the requested resource 
could not be found.



Page § 11

JSON

§ JSON (JavaScript Object Notation) is a lightweight data-interchange format. 
– Other options: XML, YAML,…

§ JSON is built on two structures:
• A collection of name/value pairs. In various languages, this is realized as an object, 

record, struct, dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector, list, or 
sequence.



Page § 12

Parsing JSON with Codable

§ To parse JSON in Swift, we'd use something called 'Codable'. It's a type alias for 
the Decodable & Encodable protocols. 

§ So when something is Codable, that means it can be encoded to or decoded 
from a JSON structure. Here's a simple example:



Page § 13

How to fetch and parse data from the API with Swift

§ 1. Build a data model (based on the structure of the JSON)



Page § 14

How to fetch and parse data from the API with Swift

§ 2. Create a Class to fetch API Data and decode it based on the model 



Page § 15

Pokédex Version 3

Task: Build the Pokédex Version 3



Page § 16

Lab2: Pokédex version 3 API Address: https://pokemon.wcpc.fun/id/1
https://pokemon.wcpc.fun/gpt/1

Task: Develop a Pokédex Application 
Objective: Create a user-friendly mobile application to serve 
as a Pokédex (No.1 – 151). The app should display crucial 
attributes of each Pokémon, including a profile picture.
Requirements:
1.Core Attributes: Integrate at least Six attributes from the 
Pokémon API, with "name" being a mandatory field. Other 
attributes may include weight, height, base experience, etc.
2.User Interface: Develop an intuitive and visually appealing 
user interface that displays the Pokémon's profile picture 
alongside its attributes.
3.Search Functionality: Implement a search feature that 
allows users to input a Pokémon ID and retrieve 
corresponding information.
4.ChatGPT Descriptions: For every Pokémon, request data 
from https://pokemon.wcpc.fun/gpt/:pokemon_id to obtain 
a description provided by ChatGPT for the respective 
Pokémon ID. Display this description prominently within the 
app, enriching the information available to the user.
5.UI Design: Prioritize aesthetics and user experience. Aim to 
make the interface polished and visually engaging.

https://pokemon.wcpc.fun/id/1


Page § 17


