class 1.3

CSC 436: i0S App Development

Swift Fundamentals: Fetching Data from APls
Si Chen (schen@wcupa.edu)

let calculateDamage: (Int, Float) -> Int = { attackPower, defenseFactor in
let damage = Float(attackPower) * (1 - defenseFactor)

return Int(damage)

// Usage:
let damageDealt = calculateDamage(100, 0.25)
print(damageDealt) // Output: 75

Page = 2

let checkLevelUp: (Int, Int) -> Bool = { currentLevel, currentXP in

H

let xpNeeded = currentlLevel * 10C

return currentXP >= xpNeeded

// Usage:
let didLevelUp = checkLevelUp(2, 250)
print(didLevelUp) // Output: true

Page = 3

class {

var highestScore =

let scoreTracker = Scorelracker()

let trackHighScore: (Int) -> Int = { newScore in
if newScore > scoreTracker.highestScore {
scorelracker.highestScore = newScore

}

return scorelracker.highestScore

Page = 4

Fetching data from APIs

= Most iOS app needs to interact with the internet, whether it's fetching images
from a server, communicating with a database, or accessing various services.
You do all of these via APIs (Application Programming Interfaces)

API Example: https://pokemon.wcpc.fun/id/1

{"base_experience":64,"base happiness":70,"capture rate":45,"color_id":5,"conquest_order":null, "evolution_chai
ender differences":0,"hatch counter":20,"height":7,"id":1,"identifier":"bulbasaur","is baby":0,"is default":1,

Page = 5

URL and URLComponents

= A URL (Uniform Resource Locator) is basically the address of a particular
resource on the internet.

" |n Swift, we have the URL and URLComponents classes that let's us work with
URLs.

= URL is straightforward, and you typically use it to create a URL from a String like
SO:

let url = URL(string:

= URLComponents, however, is more flexible. It represents the components of a
URL and allows you to construct and manipulate URLs more granularly.

var urlComponents = URLComponents()
urlComponents.scheme =
urlComponents.host =

urlComponents.path =

Page = 6 let url = urlComponents.url
printCurl!)

URL and URLComponents

var urlComponents = URLComponents()
urlComponents.scheme =
urlComponents.host =

urlComponents.path =

let url = urlComponents.url
DEintCuRl!Y)

Note: In the Swift programming language, the ! symbol is used for force-
unwrapping an optional value.

However, if urlComponents.url is nil, attempting to force-unwrap it will result
in a runtime error. Typically, using optional binding or other safer methods of
unwrapping is a better choice. For instance, you could do the following:

let url = urlComponents.url {
print(url)
se {

print(

Page =7

URLSession

= URLSession is Swift's primary APl for networking. With it, you can send and
receive data, upload and download files, and do much more. Here's how you can
fetch data from a URL:

let session = URLSession.shared
let task = session.dataTask(with: url!) { (data, response, error) in
if let error = error {
print(\(error)")
} else if let data = data {

let str = String(data: data, encoding: .utf8)
print(\(str!)™)

}
}

task.resume()

Page = 8

HTTP Methods (GET, POST, PUT, DELETE)

 HTTP methods define what action we want to perform to the resource. The
most common methods you'll interact with are GET, POST, PUT, and DELETE.

e GET: To fetch data.
e POST: To send data.

 PUT: To update existing data.
 DELETE: To remove data.

= You can specify the HTTP method of your request like so:

var request = URLRequest(Curl: url!)

request.httpMethod = // or PUT, DELETE

Page = 9

HTTP Status Codes

Page

et session = .shared
et task = session.dataTask(with: url!) { (data, response, error) in
if let error = error {
print()

f let httpResponse = response as”?
data {

(data: data, encoding: .utf8)
)

task.resume()

HTTP status codes are three-digit numbers returned by servers to
indicate the status of a web activity. These status codes are divided into
five classes:

e 2xx (Success): The action was received, understood and accepted.

(
3xx (Redirection): Further action must be taken to complete the request.
* 4xx (Client Error): The request contains bad syntax or cannot be fulfilled.

(

* 5xx (Server Error): The server failed to fulfill a seemingly valid request.

For example, a commonly seen status code is 200, which means the
request has succeeded, or 404, which means the requested resource
could not be found.

= JSON (JavaScript Object Notation) is a lightweight data-interchange format.
— Other options: XML, YAML,...

= JSON is built on two structures:

* A collection of name/value pairs. In various languages, this is realized as an object,
record, struct, dictionary, hash table, keyed list, or associative array.

* An ordered list of values. In most languages, this is realized as an array, vector, list, or
sequence.

"title": "Design Patterns",
"subtitle": "Elements of Reusable Object-Oriented Software",
"author": [
"Erich Gamma",
"Richard Helm",
"Ralph Johnson",
"John Vlissides"
1,
"year": 2009,
"weight": 1.8,
"hardcover": true,
"publisher": {
"Company": "Pearson Education",
"Country": "India"
ks
Page = 11 "website": null

Parsing JSON with Codable

= To parse JSON in Swift, we'd use something called 'Codable’. It's a type alias for
the Decodable & Encodable protocols.

= So when something is Codable, that means it can be encoded to or decoded
from a JSON structure. Here's a simple example:

t User: Codable {
ar name: String
ar email: String

¥
t data = ..._// some JSON data
et decoder = JSONDecoder()
do {
et user = try decoder.decode(User.self, from: data)
print(user.name)
¥ ch {
print(error)
¥

Page = 12

How to fetch and parse data from the API with Swift

= 1. Build a data model (based on the structure of the JSON)

import Foundation

struct PokemonData: Decodable{
//

{"base_experience":270, "base_happiness":100, "capture_rate":45,"color_id":6
, "conquest_order":null, "evolution_chain_id":78,"evolves_from_species_id":null
, "forms_switchable":0,"gender_rate":-1,"generation_id":1,"growth_rate_id":4
, "habitat_id":5,"has_gender_differences":0,"hatch_counter":120,"height":4
,"id":151,"id:1":151, "identifier" :"mew","is_baby":0,"is_default":1,['name": "Mew"
,"order":182,"order:1":182, "shape_id":6, "species_id":151, "weight" :40}

var name: String

Page = 13

How to fetch and parse data from the API with Swift

= 2. Create a Class to fetch APl Data and decode it based on the model

// Method to fetch Pokémon data from API.

// completionHandler is called when data is successfully fetched and decoded.

private func fetchAPIData(completionHandler: @®escaping (PokemonData) -> Void, pokemonID: Int) {
let url = URL(string: "https://pokemon.wcpc.fun/id/\ (pokemonID)")!

URLSession.shared.dataTask(with: url) { (data, response, error) in
guard let data = data else { return }

do {
let pokemonData = try JSONDecoder().decode(PokemonData.self, from: data)

// Move to the main thread
DispatchQueue.main.async {
completionHandler (pokemonData)
}
} catch {
print(error.localizedDescription)
}

}.resume()

Page = 14

Pokédex Version 3

Task: Build the Pokédex Version 3

Page = 15

Lab?2: Pokédex version 3 APl Address: https://[pokemon.wcpc.fun/id/1

https://pokemon.wcpc.fun/gpt/1

Task: Develop a Pokédex Application 10:55
Objective: Create a user-friendly mobile application to serve
as a Pokédex (No.1 —151). The app should display crucial
attributes of each Pokémon, including a profile picture.
Requirements:

1.Core Attributes: Integrate at least Six attributes from the
Pokémon API, with "name" being a mandatory field. Other
attributes may include weight, height, base experience, etc. :
2.User Interface: Develop an intuitive and visually appealing
user interface that displays the Pokémon's profile picture

o /‘43”
AN ~ 8
Ry

-

Name:Starmie

alongside its attributes. Base Exp:182

. . Base Happiness:70
3.Search Functionality: Implement a search feature that Capture Rate: 60
allows users to input a Pokémon ID and retrieve =

corresponding information.

4.ChatGPT Descriptions: For every Pokémon, request data
from https://pokemon.wcpc.fun/gpt/:pokemon_id to obtain
a description provided by ChatGPT for the respective
Pokémon ID. Display this description prominently within the
app, enriching the information available to the user.

5.Ul Design: Prioritize aesthetics and user experience. Aim to
make the interface polished and visually engaging.

https://pokemon.wcpc.fun/id/1

® e

& A

Page = 17

