
CSC 496: iOS App Development
Swift Fundamentals: Enums, Closures

Si Chen (schen@wcupa.edu)

Class11

Page § 2

Review

Page § 3

Protocols

§ Unlike a class, struct, or enum, a protocol is a blueprint of methods, properties,
and other requirements that suit a particular action or piece of functionality.

§ They're like the rules of the game, setting the standards for how classes,
structures, and enumerations should appear and behave.

Protocol Syntax

Swift protocols have a specific syntax, similar to what you would see when
defining a class or structure. However, protocols won't provide any
implementation for the requirements they define.

Page § 4

Adopting Protocols

§ A class, structure, or enumeration can adopt a protocol by listing its name after
their own, separated by a colon :

§ Look at this simple example:

Here, 'SomeStructure' is adopting and conforming to 'FirstProtocol' and
'AnotherProtocol'.

Page § 5

Adopting Protocols: Example

In this protocol, Fordable, there are a variable hasFourWheels and a
function startEngine(). Any type that adopts this protocol will need to
implement these two properties.

Page § 6

Protocol Inheritance

§ Swift protocols can inherit from one or many protocols. This enables you to
build on top of existing protocols to provide more specialized behavior. Let's see
how it's done.

In this scenario, Fordable is inheriting Vehicle protocol.
Therefore, anyone who will adopt Fordable protocol will need to
fulfill the requirements of Vehicle as well.

Page § 7

Optional Protocol Requirements

§ In Swift, protocols can also have optional requirements, which are not required
to be implemented by a type in order to conform to the protocol. These optional
requirements are marked by the optional keyword.

§ Here startMoving() and stopMoving() are not mandatory for any type that
adopts Moveable protocol.

Page § 8

Understanding SwiftUI's Data Flow - ObservableObject and @Published

• ObservableObject: A protocol that SwiftUI uses to re-render
a view when the data it observes changes.

• @Published: A property wrapper that marks properties of an
ObservableObject to notify the UI of changes.

Problem with Bulbasaur Class in SwiftUI: Simply updating the class
attribute won't update the UI.

Scenario: You have a custom class, and you want your SwiftUI
view to update when an attribute of the class changes.

Page § 9

Understanding SwiftUI's Data Flow - ObservableObject and @Published

§ How to Implement ObservableObject
1. Conform your class to the ObservableObject protocol.

2. Use @Published to annotate attributes that, when changed, should trigger a UI
update.

Use @ObservedObject or @StateObject to bind an instance of your
class to the view.

•@ObservedObject: Use when your observable object is passed from a parent
view.
•@StateObject: Use when your observable object is created within the view.

Page § 10

Enums

§ Enumerating values with enums
– Enumerations are a programming construct that lets you define a value type

with a finite set of options.
– Similar to enum type in Java

In many programming languages,
including C, enum are defined as a
type definition on top of an
integer.

In Swift, enums do not need to
represent integers --> they do not
need to be backed by any type

Page § 11

Enums: Raw Values and Functions

§ In Swift, you can assign raw values to enumeration cases when you define the
enumeration.

§ We can also add functions or computed property into enums

Page § 12

Enums: Associated Values

Associated Values Enums in Swift can store associated values, providing
additional information about each case. Check out this example:

Example: Dungeon Room Enumeration

Create an enumeration called DungeonRoom with cases for different types of
rooms: treasureRoom, monsterRoom, and emptyRoom.

• Each treasureRoom contains an integer value representing the amount of gold.
Each monsterRoom contains a string representing the type of monster.

• Write a function describeRoom that takes a DungeonRoom as an argument and
returns a string describing the room.

Page § 13

Enums: Associated Values

Page § 14

Exercise: Direction Enumeration

Direction Enumeration:

• Create an enumeration called Direction with four possible cases: north, south,
east, and west.

• Assume a player is at position (0, 0) on a 2D grid. Write a function movePlayer
that takes a Direction and a distance as arguments and returns the new position
of the player.

Page § 15

Exercise: Player Action Enumeration

Player Action Enumeration:

Create an enumeration called PlayerAction with cases for different player actions:
attack, defend, heal, and escape.

• Each attack action has an associated integer value representing the attack
power. Each defend action has an associated integer value representing the
defense power.

• Write a function performAction that takes a PlayerAction as an argument and
prints a description of the action performed.

Page § 16

Page § 17

Page § 18

Closures

§ Closures are also referred to as anonymous functions
– Closures are functions without a name

• Can take a set of input parameters

• Can return an output
• Can be assigned, stored, passed around, and used as input and output to

functions

Page § 19

Closures

§ Syntax: At its core, a closure is a block of code that can be called in your
program, somewhat similar to functions. However, they can be written in a
more concise and readable way!

§ Here is the basic syntax of a swift closure:

Example:

In this example, sumClosure is a closure that takes two
integers and returns the sum of them.

Page § 20

Closures

Page § 21

Closures

§ Capture Lists: Closures can "capture", or store, references to variables and
constants. This is useful when you want a closure to remember those values and
use them later even if the original value has been destroyed or changed.

§ Here's how it looks:

Even though number changed after the incrementer closure was
created, the closure still prints 6 because it captured the original
value of number when the closure was created.

Page § 22

Closures

§ Capture Lists: Closures can "capture", or store, references to variables and
constants. This is useful when you want a closure to remember those values and
use them later even if the original value has been destroyed or changed.

In this case, every call to makeIncrementer() would return a
new incrementer closure that has its own counter capture list.

Page § 23

Closures

§ Escaping Closures Closures that are passed as arguments to a function, but are
called after the function is done executing are known as escaping closures.
Escaping closures are written with a @escaping annotation.

In this function, the escapingClosure might be called
after doSomething() returns. Hence, it escapes the
function's scope.

Page § 24

Closures

§ Escaping Closures often use as method parameters
– Can be really useful when we want to be notified when a long-running task is

completed

§ Example: We want to save the details of our Circle object to a remote
database.
– We may want to be notified when this process has completed.

• Execute some additional code à Printing a completion message, update UI,
…etc

– Passing a closure to execute on completion

Page § 25

Closures Examples

§ Imagine we are developing an iOS App for a restaurant, and we need a piece of
code that can handle food orders. A customer can tap on a food item to place an
order.

§ Now, how would you write this code using closures in Swift?

Now, whenever a customer taps on a food item, you
could execute this closure:

In the console, you would then see: "Order received for Pizza".

Page § 26

Closures Examples

§ Imagine we are developing a food delivery app and need a function to calculate
the total cost of an order.

§ This includes the sum of the prices of each food item, plus a delivery fee.

– The sum and fee will vary, so we want to use a closure to perform this calculation.

§ We can visualize this as follows:

Here, we have an array of food prices foodPrices, a fixed
delivery fee deliveryFee, and a closure totalCost that takes
an array of integers and an integer, and returns an integer.

How to implement this closure?

Page § 27

Closures Examples

§ Here's how we can solve it:
– Step 1: We assign a block of code that performs the necessary calculation to totalCost.

– Step 2: We can now use this closure to calculate the total cost of an order.

Page § 28

Exercise: Calculating Damage

§ Create a closure named calculateDamage that takes two arguments: an
integer representing the player's attack power, and a float representing the
enemy's defense factor (a number between 0 and 1). The closure should return
an integer representing the damage dealt to the enemy.

Page § 29

Exercise: Checking Level Up

Checking Level Up:

§ Create a closure named checkLevelUp that takes two arguments: an integer
representing the player's current level, and an integer representing the player's
current experience points. Assume 100 points are needed to level up. The
closure should return a boolean indicating whether the player levels up.

Page § 30

Exercise: High Score Tracker

High Score Tracker

§ You are developing a simple game where players can achieve high scores. You
need a way to track the highest score achieved so far even after a new game
starts. Create a closure that can update and provide the highest score whenever
called.

Page § 37

JSON

§ JSON (JavaScript Object Notation) is a lightweight data-interchange format.
– Other options: XML, YAML,…

§ JSON is built on two structures:
• A collection of name/value pairs. In various languages, this is realized as an object,

record, struct, dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector, list, or
sequence.

Page § 38

How to fetch and parse data from the API with Swift

§ 1. Build a data model (based on the structure of the JSON)

Page § 39

How to fetch and parse data from the API with Swift

§ 2. Create a Class to fetch API Data and decode it based on the model

Page § 40

Pokédex Version 3

Task: Build the Pokédex Version 3

Page § 41

Pokédex version 3 API Address: https://pokemon.wcpc.fun/id/1

Task: Develop a Pokédex Application
Objective:
Create a user-friendly mobile application to serve as a
Pokédex. The app should display crucial attributes of
each Pokémon, including a profile picture.
Requirements:
•Core Attributes: Integrate at least four attributes from
the Pokémon API, with "name" being a mandatory
field. Other attributes may include weight, height, base
experience, etc.
•User Interface: Develop an intuitive and visually
appealing user interface that displays the Pokémon's
profile picture alongside its attributes.
•Search Functionality: Implement a search feature that
allows users to input a Pokémon ID and retrieve
corresponding information.
•UI Design: Prioritize aesthetics and user experience.
Aim to make the interface polished and visually
engaging.

Page § 42

