
CSC 496: iOS App Development
Swift Fundamentals: Classes (2), Protocols

Si Chen (schen@wcupa.edu)

Class10



Page § 2

Review



Page § 3

Bulbasaur Class

Bulbasaur, known as Fushigidane in Japan, is a 
Pokemon species in Nintendo and Game Freak's 
Pokemon franchise. Designed by Ken Sugimori, their 
name is a combination of the words ``bulb" and 
``dinosaur". First appearing in Pokemon Red and Blue.



Page § 4

Exercise: Bulbasaur Class

We know that Bulbasaur evolves into Ivysaur when it reaches level 16 and 
subsequently transforms into Venusaur upon attaining level 32.

UML Diagram for Bulbasaur Class 
Please refer to the attached UML diagram to design a class for Bulbasaur
(Bulbasaur.swift):



Page § 5

Bulbasaur Class

Attributes for Each Bulbasaur Object
•id: Represents the evolutionary stage of the Pokemon. It is set to 1 for Bulbasaur, 2 
for Ivysaur, and 3 for Venusaur. The initial value is 1.
•level: Denotes the current level of the Bulbasaur object, initialized to 1.

Methods for Each Bulbasaur Object
•setLevel(lv: int): void: Takes an integer value as an argument to update the object's 
level. If the new level falls within the range [16-31], the Pokemon evolves into 
Ivysaur. If the level is 32 or higher, it evolves into Venusaur.
•getLevel(): int: Returns an integer representing the current level of the Pokemon.
•getName(): String: Returns the name of the Pokemon as a string ("Bulbasaur" for id 
= 1, "Ivysaur" for id = 2, and "Venusaur" for id = 3).
•getID(): Returns the current id value.
•toString(): Outputs the current level and id of the Bulbasaur object.
•equals(): Compares the level and id of two different Bulbasaur objects to determine 
if they are equal.
•copy(): Creates a clone of a Bulbasaur object with the same level and id values.



Page § 6

Exercise: Bulbasaur Level-Up App 

Objective:
Use the Bulbasaur class and design a SwiftUI iOS 
application that manages the state of a Bulbasaur as it 
levels up and evolves.
Requirements:
1.UI Elements:
The application should have the following UI elements:

1. A text label displaying the current level of the Pokémon 
(e.g., "Lv: 1").

2. An image displaying the current form of the Pokémon 
(Bulbasaur, Ivysaur, or Venusaur). The image assets for 
these forms are already provided in the course website, 
please download and add them to your project. The 
filename for each image corresponds to the Pokémon's 
name (e.g., "Bulbasaur.png", "Ivysaur.png", 
"Venusaur.png").

3. A button labeled "Level Up" that, when pressed, 
increments the Pokémon's level by 1 and updates its form 
if it evolves.

4. A ”reset” button to reset level back to 1



Page § 7

Inheritance and Polymorphism

§ The Base class, also known as the superclass or parent class, is a class that is 
being inherited from. 

§ The Derived class, also known as subclass or child class, is a class that inherits 
from another class. Here's an example of a base class "Dog" and a derived class 
"Poodle".



Page § 8

Method Overriding

§ Here, we have overridden the bark method for the Poodle class. Now, when 
we call the bark method on a Poodle object, it will print "Yip! Yip!" instead of a 
regular "Woof!".



Page § 9

Polymorphism

Even though we're passing a Poodle, our printPet function treats 
it like a Dog. This is polymorphism in action!

Polymorphism means the ability to request that the same operations be 
performed by a wide range of different types of things.



Page § 10

Polymorphism

Polymorphism means the ability to request that the same operations be 
performed by a wide range of different types of things.

In Swift, the underscore _ used as the external name of a function or 
method parameter indicates that the parameter name can be omitted 
when calling the function or method.

printPet(pet: myDog) 

Concise way (if use _ as the external name): printPet(myDog) 



Page § 11

Type Casting and Checking

1.Type Casting is a way to check the type of an instance, or to treat that instance 
as a different superclass or subclass from somewhere else in its own class 
hierarchy. This is incredibly useful when working with classes and subclasses in 
Swift. Firstly, we need to understand two fundamental Swift operators:
– "is" operator: Tests the type of a class instance. Think of it like you're asking "is this a 

certain type?"

– "as" operator: Performs certain cast to a class instance.



Page § 12

Downcasting

§ Downcasting can be either:
– Safe (optional) - Using "as?": This is when you're not sure if the downcast will succeed. 

The result is an optional value that will be nil if the downcast was not possible.

– Forced (non-optional) - Using "as!": This is when you're sure that the downcast will 
always succeed. But be careful -- using this when the downcast won't succeed will 
cause a runtime error! 

In this example, 'myVehicle' is of type 
'Vehicle' but it refers to an instance of 
'Car'. The 'beep' method is specific to the 
'Car' class. 'myVehicle' cannot call 'beep' 
unless it is downcast to 'Car'.



Page § 13

Type Checking in Hierarchies

§ With the "is" operator, we can check the type of an object. It returns true if the 
object is of that type. If the object's class is a child of that type, this will also 
return true. Here's a quick example:

In the above example, myVehicle is both a Vehicle and a Car, so 
when we test it with the is operator, both checks return true.



Page § 14

Protocols

§ Unlike a class, struct, or enum, a protocol is a blueprint of methods, properties, 
and other requirements that suit a particular action or piece of functionality. 

§ They're like the rules of the game, setting the standards for how classes, 
structures, and enumerations should appear and behave.

Protocol Syntax

Swift protocols have a specific syntax, similar to what you would see when 
defining a class or structure. However, protocols won't provide any 
implementation for the requirements they define.



Page § 15

Adopting Protocols

§ A class, structure, or enumeration can adopt a protocol by listing its name after 
their own, separated by a colon :

§ Look at this simple example:

Here, 'SomeStructure' is adopting and conforming to 'FirstProtocol' and 
'AnotherProtocol'.



Page § 16

Adopting Protocols: Example

In this protocol, Fordable, there are a variable hasFourWheels and a 
function startEngine(). Any type that adopts this protocol will need to 
implement these two properties.



Page § 17

Protocol Inheritance

§ Swift protocols can inherit from one or many protocols. This enables you to 
build on top of existing protocols to provide more specialized behavior. Let's see 
how it's done.

In this scenario, Fordable is inheriting Vehicle protocol. 
Therefore, anyone who will adopt Fordable protocol will need to 
fulfill the requirements of Vehicle as well.



Page § 18

Optional Protocol Requirements

§ In Swift, protocols can also have optional requirements, which are not required 
to be implemented by a type in order to conform to the protocol. These optional 
requirements are marked by the optional keyword.

§ Here startMoving() and stopMoving() are not mandatory for any type that 
adopts Moveable protocol.



Page § 19

Understanding SwiftUI's Data Flow - ObservableObject and @Published

• ObservableObject: A protocol that SwiftUI uses to re-render 
a view when the data it observes changes.

• @Published: A property wrapper that marks properties of an 
ObservableObject to notify the UI of changes.

Problem with Bulbasaur Class in SwiftUI: Simply updating the class 
attribute won't update the UI.

Scenario: You have a custom class, and you want your SwiftUI 
view to update when an attribute of the class changes.



Page § 20

Understanding SwiftUI's Data Flow - ObservableObject and @Published

§ How to Implement ObservableObject
1. Conform your class to the ObservableObject protocol.

2. Use @Published to annotate attributes that, when changed, should trigger a UI 
update.

Use @ObservedObject or @StateObject to bind an instance of your 
class to the view.

•@ObservedObject: Use when your observable object is passed from a parent 
view.
•@StateObject: Use when your observable object is created within the view.



Page § 21


