
CSC 496: iOS App Development
Swift Fundamentals: Classes (1)

Si Chen (schen@wcupa.edu)

Class9



Page § 2

Review



Page § 3

Pokédex version 2 Solution (using computed property)

In this case, the computed property pokemonID_num is 
derived from PokemonID. Any time you get or set 
pokemonID_num, the underlying PokemonID state variable is 
accessed or modified.



Page § 4

Computed Property

Declaration: Example
The basic syntax of a computed property involves using a code block { } after the 
property name to include a get block and optionally, a set block.

In this example, area is a computed property that 
calculates its value by multiplying width and height. You 
can also set area, and doing so will update width and 
height accordingly.



Page § 5

Pokédex version 2
Objective:
To create an iOS app that displays the name and profile picture of a Pokémon based on the 
user-inputted Pokémon ID.

Instructions:
• Download and Setup Project:
Download the pokedex_ver_2.zip file from our class website. Unzip the file and open the 
project in Xcode.

• Examine the Pokemon.Swift File:
Open the Pokemon.Swift file in the project. Locate the array firstGenPokemonNames which 
contains the names of the first-generation Pokémon.

• Implement User Input and Display in ContentView.swift:
In ContentView.swift, write code to accomplish the following:
o Use the firstGenPokemonNames array to find the name of the Pokémon corresponding to 

the entered ID.
o Display the Pokémon's name and its corresponding profile picture based on the entered ID.

For example, if the user inputs Pokémon ID = 1, the app should display "Bulbasaur" along with 
its profile picture.

Tips:
You may use the .font(.custom("Pokemon-Pixel-Font", size: 16)) modifier to set a Pokemon 
font.
How would you handle invalid input (try using nil-coalescing operator ??)
How would you handle edge cases where the user input exceeds 151 or falls below 0?



Page § 6

Classes

§ Object-oriented programming is a common and powerful programming 
paradigm. 

§ Classes in Swift allow you to define blueprints for objects, and they are 
one of the building blocks of object-oriented programming (OOP). 

§ Classes can have properties, methods, and initializers, just like structures. 
§ However, they also offer additional functionalities not available in 

structures, such as inheritance, type casting, and deinitializers.



Page § 7

Declaration

§ Classes are declared with the keyword class followed by the name of the 
class. A basic class structure would look like this:



Page § 8

Initialization

§ A class can be initialized using an init method within the class. It is called 
when an instance of a class is created.

To create an instance of Dog class, you just need to call Dog(name: ”Joey")



Page § 9

Accessing Properties

§ You can access the properties of a class instance using dot syntax.

Here, myDog is an instance of 
our Dog class



Page § 10

Methods

§ Methods are functions that are associated with a particular class. They 
are declared within the body of the class similar to the variables 
declaration.

The method bark() is called on the instance myDog, causing it to print a 
message to the console.



Page § 11

Mutability

§ Swift classes are reference types and hence their instances (or objects) 
are mutable.

Even though dog1 is assigned as a let constant, because it's a reference 
to an object, we can change the properties on dog1 through dog2.



Page § 12

Structs vs Classes

• In Swift, structs and classes have a lot in common: 
• both can have properties and methods. 

• But there are some key differences you should be aware of:
• Unlike classes, structs are always copied when they are passed around your 

code.
• Structs can't be subclassed.

The key difference is that classes are reference types and structs are value types!



Page § 13

Exercise: Circle Class

Circle Class

init()



Page § 14

Bulbasaur Class

Bulbasaur, known as Fushigidane in Japan, is a 
Pokemon species in Nintendo and Game Freak's 
Pokemon franchise. Designed by Ken Sugimori, their 
name is a combination of the words ``bulb" and 
``dinosaur". First appearing in Pokemon Red and Blue.



Page § 15

Exercise: Bulbasaur Class

We know that Bulbasaur evolves into Ivysaur when it reaches level 16 and 
subsequently transforms into Venusaur upon attaining level 32.

UML Diagram for Bulbasaur Class 
Please refer to the attached UML diagram to design a class for Bulbasaur
(Bulbasaur.swift):



Page § 16

Bulbasaur Class

Attributes for Each Bulbasaur Object
•id: Represents the evolutionary stage of the Pokemon. It is set to 1 for Bulbasaur, 2 
for Ivysaur, and 3 for Venusaur. The initial value is 1.
•level: Denotes the current level of the Bulbasaur object, initialized to 1.

Methods for Each Bulbasaur Object
•setLevel(lv: int): void: Takes an integer value as an argument to update the object's 
level. If the new level falls within the range [16-31], the Pokemon evolves into 
Ivysaur. If the level is 32 or higher, it evolves into Venusaur.
•getLevel(): int: Returns an integer representing the current level of the Pokemon.
•getName(): String: Returns the name of the Pokemon as a string ("Bulbasaur" for id 
= 1, "Ivysaur" for id = 2, and "Venusaur" for id = 3).
•getID(): Returns the current id value.
•toString(): Outputs the current level and id of the Bulbasaur object.
•equals(): Compares the level and id of two different Bulbasaur objects to determine 
if they are equal.
•copy(): Creates a clone of a Bulbasaur object with the same level and id values.



Page § 17

Bulbasaur Level-Up App

Objective:
Use the Bulbasaur class and design a SwiftUI iOS 
application that manages the state of a Bulbasaur as it 
levels up and evolves.
Requirements:
1.UI Elements:
The application should have the following UI elements:

1. A text label displaying the current level of the Pokémon 
(e.g., "Lv: 1").

2. An image displaying the current form of the Pokémon 
(Bulbasaur, Ivysaur, or Venusaur). The image assets for 
these forms are already provided in the course website, 
please download and add them to your project. The 
filename for each image corresponds to the Pokémon's 
name (e.g., "Bulbasaur.png", "Ivysaur.png", 
"Venusaur.png").

3. A button labeled "Level Up" that, when pressed, 
increments the Pokémon's level by 1 and updates its form 
if it evolves.

4. A ”reset” button to reset level back to 1



Page § 18


