
CSC 496: iOS App Development
Swift Fundamentals: Structs, Computed Property

Si Chen (schen@wcupa.edu)

Class6



Page § 2

ContentView.swift (Pokédex version 2)



Page § 3

Structs

§ Structs, short for structures, allow us to group related types of data together. 
This is very useful when developing apps in iOS. It helps in organizing our code, 
making it more readable, and reusing it in different parts of the app.

§ 1. Declaration: To declare a struct, we first use the keyword 'struct', followed by 
the name of the struct, and then we enclose the properties and methods of the 
struct in braces {}. Here's how you do it:

In this example, we've declared a struct Student that has 
two properties, name and age.



Page § 4

Structs

§ 2. Initialization: Structs in Swift have an automatic member wise initializer, 
which you can use to initialize the struct. Here's how you do that:

§ 3. Accessing Properties: To access the properties of a struct, you can use the dot 
syntax. 

Here, we've created an instance of Student struct.



Page § 5

Structs

§ 2. Initialization: Structs in Swift have an automatic member wise initializer, 
which you can use to initialize the struct. Here's how you do that:

§ 3. Accessing Properties: To access the properties of a struct, you can use the dot 
syntax. 

Here, we've created an instance of Student struct.



Page § 6

Structs

§ 4. Methods: Structs can also have methods in Swift. Yes, you heard it right! 
Here's how to declare a method inside a struct:

Here, we've added a method description to our Student struct. Let's 
call description method using an instance of Student:



Page § 7

Structs

§ 5. Mutability: By default, struct instances are immutable, meaning we can't 
change their properties once they are created. However, we can make them 
mutable by declaring the instance with 'var' instead of 'let'. Here's an example:



Page § 8

mutating keyword

§ In the Car, instances are immutable by default unless explicitly declared 
mutable with the var keyword. 

§ However, even if an instance is mutable, any method within the struct that aims 
to modify the properties of the struct must be marked with the mutating 
keyword.

§ In our example, the honk() method merely accesses the make and model 
properties without modifying them, so it doesn't need to be marked as 
mutating.

§ However, if you have a method that tries to change the value of make or 
model, you will need to use the mutating keyword like so:



Page § 9

Structs: Conclusion

§ Bundling values into structs
– Class objects are great for encapsulating data and functionality within a 

unifying concept.
– However, not everything is an object

• We may need to represent data that is logically grouped together
• But there isn’t much more than that à Use Structs

§ Structs are value types, not classes



Page § 10

Question 1: Coordinate Point Representation

§ Create a Swift struct named Point that has two properties: x and y, both of type 
Double. 

§ Also, write a function within the struct named distanceToOrigin that calculates 
the distance of the point to the origin (0, 0) using the formula:

§ Example Usage:



Page § 11

Question 2: Simple Bank Account

§ Create a Swift struct named BankAccount that has a balance property of type 
Double. Write two methods within the struct:

1.deposit(amount: Double): Adds the amount to the balance. Return the new 
balance.

2.withdraw(amount: Double): Subtracts the amount from the balance. If the 
withdrawal amount is greater than the balance, return nil; otherwise, return the 
new balance.

§ Struct Definition:

§



Page § 12

Computed Property

§ In Swift, a computed property doesn't store a value. Instead, it provides a 
getter and an optional setter to retrieve and set other properties and 
values indirectly. 

§ Computed properties are used when the property's value is derived or 
calculated from other properties' values or needs to be set 
dynamically.



Page § 13

Computed Property

§ Declaration: A simple way to declare a Computed Property in Swift looks like 
this:

You can see above, we use the getter to access the value of the 
property and the setter to set or modify it.



Page § 14

Computed Property

Declaration: Example
The basic syntax of a computed property involves using a code block { } after the 
property name to include a get block and optionally, a set block.

In this example, area is a computed property that 
calculates its value by multiplying width and height. You 
can also set area, and doing so will update width and 
height accordingly.



Page § 15

Computed Property

§ Lazy Initialization: Sometimes, it might be kin on resources if you compute 
a complex property upfront. Swift allows for lazy initialization of properties 
with the lazy keyword. This means that the computation of the property is 
delayed until it is first accessed. Consider:

§ Here, expensiveValue won't be computed until the first time it's 
accessed. This can make your app more efficient by spreading out the 
work over time!



Page § 16

Computed Property

§ Lazy Initialization: Sometimes, it might be kin on resources if you compute 
a complex property upfront. Swift allows for lazy initialization of properties 
with the lazy keyword. This means that the computation of the property is 
delayed until it is first accessed. Consider:

§ Here, expensiveValue won't be computed until the first time it's 
accessed. This can make your app more efficient by spreading out the 
work over time!

The parentheses at the end of 
the expensiveValue computed property is 
known as a "closure expression" and it allows the 
property to have a default value that is computed 
lazily.



Page § 17

Property Observers

§ Property Observers: Swift offers two kinds of property 
observers willSet and didSet, which get called before and after a property's 
value gets changed. Useful to track the changes!



Page § 18

Pokédex version 2 Solution (using computed property)

In this case, the computed property pokemonID_num is 
derived from PokemonID. Any time you get or set 
pokemonID_num, the underlying PokemonID state variable is 
accessed or modified.



Page § 19

Pokédex version 2
Objective:
To create an iOS app that displays the name and profile picture of a Pokémon based on the 
user-inputted Pokémon ID.

Instructions:
• Download and Setup Project:
Download the pokedex_ver_2.zip file from our class website. Unzip the file and open the 
project in Xcode.

• Examine the Pokemon.Swift File:
Open the Pokemon.Swift file in the project. Locate the array firstGenPokemonNames which 
contains the names of the first-generation Pokémon.

• Implement User Input and Display in ContentView.swift:
In ContentView.swift, write code to accomplish the following:
o Use the firstGenPokemonNames array to find the name of the Pokémon corresponding to 

the entered ID.
o Display the Pokémon's name and its corresponding profile picture based on the entered ID.

For example, if the user inputs Pokémon ID = 1, the app should display "Bulbasaur" along with 
its profile picture.

Tips:
You may use the .font(.custom("Pokemon-Pixel-Font", size: 16)) modifier to set a Pokemon 
font.
How would you handle invalid input (try using nil-coalescing operator ??)
How would you handle edge cases where the user input exceeds 151 or falls below 0?



Page § 20

Classes

§ Object-oriented programming is a common and powerful programming 
paradigm. 

§ Classes in Swift allow you to define blueprints for objects, and they are 
one of the building blocks of object-oriented programming (OOP). 

§ Classes can have properties, methods, and initializers, just like structures. 
§ However, they also offer additional functionalities not available in 

structures, such as inheritance, type casting, and deinitializers.



Page § 21

Classes



Page § 22

Classes



Page § 23

Exercise: Circle Class

Circle Class



Page § 24

Structs vs Classes

• In Swift, structs and classes have a lot in common: 
• both can have properties and methods. 

• But there are some key differences you should be aware of:
• Unlike classes, structs are always copied when they are passed around your code.

• Structs can't be subclassed.



Page § 25


