
CSC 496: iOS App Development
Swift Fundamentals: Functions, Structs, Computed PropertySi

Chen (schen@wcupa.edu)

Class5

Page § 2

Functions

§ Functions are a building block of almost all programming languages.
§ Allowing functionality to be defined and reused.
§ The advantage of this is that code can be reused, and your overall

codebase becomes much easier to understand.

Function Declaration
Declaring a function in Swift is accomplished using the func keyword. Let's
take a look at a basic function declaration:

In this example, greet is the name of
the function. It doesn't take any
parameters and doesn't return a
value. Whenever this function is
called, it will print out "Hello, world!"
to the console.

Page § 3

Functions

Calling Functions

§ After declaring a function, you can call it whenever you want to execute its
defined task. You do this by using the function's name followed by parentheses.
Let's see this in action relatively to our previous example:

Return Types

§ Some functions don't just perform a task, they also return a value. This is
indicated by using the -> symbol along with the type of data the function is
going to return. Check out this example:

Page § 4

Functions

Calling Functions

§ After declaring a function, you can call it whenever you want to execute its
defined task. You do this by using the function's name followed by parentheses.
Let's see this in action relatively to our previous example:

Return Types

§ Some functions don't just perform a task, they also return a value. This is
indicated by using the -> symbol along with the type of data the function is
going to return. Check out this example:

Page § 5

Functions

In this example, addTwoNumbers is a function that takes in two
parameters (num1, num2), both of the type Int.

It performs the addition of these two numbers and then returns the
result, which is also of the type Int.

Page § 6

Functions

Parameter Names

§ In Swift, every parameter has both an external name and an internal name. The
internal name is used within the function body, while the external name is used
when calling the function. Let's break down into an example:

In this function, person is the internal name of the first parameter
and hometown is the internal name of the second parameter. But when we
call this function we use the external names person and from:

Page § 7

Functions

Default Parameters

§ A default parameter value is a value that is assigned to a function parameter if
no argument is provided when calling the function. In Swift, you can specify a
default parameter value by assigning a value to the parameter when you define
the function. Here's an example on how it's done:

§ You can call this function in two ways:

Page § 8

Functions

Variadic Parameters

§ Have you ever wanted to accept an unknown number of arguments in your
function?

§ Swift has you covered with Variadic Parameters -- A variadic parameter accepts
zero or more values of a specified type. In Swift, you can indicate a variadic
parameter by inserting three period characters (...) after the parameter's type
name. Let's look at an example:

Page § 9

Functions

In-Out Parameters

§ Sometimes, we want a function to modify one or more of its parameters.

§ In Swift, function parameters are constants by default. But with in-
out parameters, a function can change the value that was passed in, and those
changes will persist after the function has finished! Let's see an example how to
use an in-out parameter:

This will output: 20
In this case, you see myNum was doubled inside the function, and it
retained the changed value after the function is called. This is the
power of in-out parameters

Page § 10

Functions: Conclusion

§ Functions are a building block of almost all programming languages.
§ Allowing functionality to be defined and reused.

func nameOfFunction(parameter1: ParamaterType1,
parameter2: ParamaterType2, …) –> OutputType {
 // Function’s implementation
 // If the function has an output type
 // the function must return a valid value
 return output
}

Page § 11

Question 1: Fahrenheit to Celsius Converter

§ Write a Swift function named convertToCelsius that takes a single
argument, a Double representing a temperature in Fahrenheit. The
function should return a Double representing the equivalent temperature
in Celsius.

§ The formula to convert from Fahrenheit to Celsius is

Example Usage:

Page § 12

Question 2: Fibonacci Sequence Generator

§ Write a Swift function named generateFibonacci that takes a single argument,
an Int n, and returns an array of Ints containing the first n numbers in the
Fibonacci sequence. The Fibonacci sequence starts with the numbers 0 and 1,
and each subsequent number is the sum of the two preceding ones (0, 1, 1, 2, 3,
5, 8, ...).

§ Function Signature:

§ Example Usage:

Page § 13

Nested Functions

Declaration of Nested Functions

§ Nested functions, also known as Inner functions, are functions declared within
other functions. Think of it like boxes inside. Here's a basic structure of a nested
function:

§ In the above code, innerFunction() is nested inside outerFunction().
The innerFunction() is only visible within the scope it is defined, which means we
can only call innerFunction() inside outerFunction(). Trying to
call innerFunction() outside outerFunction() will throw an error.

Page § 14

Nested Functions

Calling Nested Functions

§ How to call a nested function? You just call it like you would any other function,
however the scope is important. Here's an example:

§ When we run outerFunction(), it also executes innerFunction() which prints Hello,
World! 🌍. However we cannot call innerFunction() independently.

Page § 15

Nested Functions

Use Cases for Nested Functions

• Now, you might wonder why we need nested functions in Swift. There are several
reasons that encourage the use of nested functions:

• Encapsulation: Nested functions are a way to hide functionality that isn’t necessary for
the outside world to see or use.

• Readability: Grouping related code together can make it much easier to understand.

• Prevents namespace pollution: The scope of nested functions is limited to the enclosing
function, which can prevent potential name collisions.

Page § 16

Nested Functions

In the above example, incrementer() is a nested function within
the makeIncrementer() function. This function generates and returns another
function that increments total by a specified amount.

Page § 17

Exercise 1: Nested Multiplier Function

Objective:

§ To understand the concept and usage of nested functions in Swift by
implementing a function that multiplies two numbers.

Description:

§ Create a nested function called multiplier inside a function called calculate that
takes two parameters a and b. The nested function multiplier should multiply a
and b and return the result. Call the calculate function with any two numbers
and print the result.

Page § 18

Exercise 2: Cumulative Multiplication Function

Objective:

§ To explore more advanced use-cases of variable capturing for maintaining state
in nested functions.

Description:

§ Create a function called makeMultiplier that takes an integer parameter
multiplyAmount. Inside it, define a nested function called multiplier that
multiplies a running total (stored in the outer function) by multiplyAmount. The
makeMultiplier function should return this nested function.

Example Usage:

Page § 19

ContentView.swift (Pokédex version 2)

Page § 20

Structs

§ Bundling values into structs
– Class objects are great for encapsulating data and functionality within a

unifying concept.
– However, not everything is an object

• We may need to represent data that is logically grouped together
• But there isn’t much more than that à Use Structs

§ Structs are value types, not classes

Page § 21

Structs has Value-type Semantics

// Struct a value-type semantics --> when you
mutate a struct, you create a copy of the struct
with the changed properties

Page § 22

Question 1: Coordinate Point Representation

§ Create a Swift struct named Point that has two properties: x and y, both of type
Double.

§ Also, write a function within the struct named distanceToOrigin that calculates
the distance of the point to the origin (0, 0) using the formula:

§ Example Usage:

Page § 23

Question 2: Simple Bank Account

§ Create a Swift struct named BankAccount that has a balance property of type
Double. Write two methods within the struct:

1.deposit(amount: Double): Adds the amount to the balance. Return the new
balance.

2.withdraw(amount: Double): Subtracts the amount from the balance. If the
withdrawal amount is greater than the balance, return nil; otherwise, return the
new balance.

§ Struct Definition:

§

Page § 24

Computed Property

§ In Swift, a computed property doesn't store a value. Instead, it provides a
getter and an optional setter to retrieve and set other properties and
values indirectly.

§ Computed properties are used when the property's value is derived or
calculated from other properties' values or needs to be set
dynamically.

Page § 25

Computed Property

Syntax
The basic syntax of a computed property involves using a code block { } after the
property name to include a get block and optionally, a set block.

In this example, area is a computed property that
calculates its value by multiplying width and height. You
can also set area, and doing so will update width and
height accordingly.

Page § 26

Lazy Initialization 😴

§ Sometimes, it might be kin on resources if you compute a complex
property upfront. Swift allows for lazy initialization of properties with
the lazy keyword. This means that the computation of the property is
delayed until it is first accessed. Consider:

§ Here, expensiveValue won't be computed until the first time it's
accessed. This can make your app more efficient by spreading out the
work over time!

Page § 27

Lazy Initialization 😴

§ Sometimes, it might be kin on resources if you compute a complex
property upfront. Swift allows for lazy initialization of properties with
the lazy keyword. This means that the computation of the property is
delayed until it is first accessed. Consider:

§ Here, expensiveValue won't be computed until the first time it's
accessed. This can make your app more efficient by spreading out the
work over time!

The parentheses at the end of
the expensiveValue computed property is
known as a "closure expression" and it allows the
property to have a default value that is computed
lazily.

Page § 28

Pokédex version 2 Solution (using computed property)

In this case, the computed property pokemonID_num is
derived from PokemonID. Any time you get or set
pokemonID_num, the underlying PokemonID state variable is
accessed or modified.

Page § 29

Pokédex version 2
Objective:
To create an iOS app that displays the name and profile picture of a Pokémon based on the
user-inputted Pokémon ID.

Instructions:
• Download and Setup Project:
Download the pokedex_ver_2.zip file from our class website. Unzip the file and open the
project in Xcode.

• Examine the Pokemon.Swift File:
Open the Pokemon.Swift file in the project. Locate the array firstGenPokemonNames which
contains the names of the first-generation Pokémon.

• Implement User Input and Display in ContentView.swift:
In ContentView.swift, write code to accomplish the following:
o Use the firstGenPokemonNames array to find the name of the Pokémon corresponding to

the entered ID.
o Display the Pokémon's name and its corresponding profile picture based on the entered ID.

For example, if the user inputs Pokémon ID = 1, the app should display "Bulbasaur" along with
its profile picture.

Tips:
You may use the .font(.custom("Pokemon-Pixel-Font", size: 16)) modifier to set a Pokemon
font.
How would you handle invalid input (try using nil-coalescing operator ??)
How would you handle edge cases where the user input exceeds 151 or falls below 0?

Page § 30

Classes

§ Object-oriented programming is a common and powerful programming
paradigm.

§ Classes in Swift allow you to define blueprints for objects, and they are
one of the building blocks of object-oriented programming (OOP).

§ Classes can have properties, methods, and initializers, just like structures.
§ However, they also offer additional functionalities not available in

structures, such as inheritance, type casting, and deinitializers.

Page § 31

Classes

Page § 32

Classes

Page § 33

Exercise: Circle Class

Circle Class

Page § 34

