Class3

CSC 436: i0S App Development

Swiftll
Si Chen (schen@wcupa.edu)

Build the first A

B8 < @ Assets. t &Y Swift

2 myfirstproject) & Shared) @ Assets.xcassets) [l Applcon

AccentColor Appicon
Applcon
[]
Hr2
Bes3
B pa

= pokemon

iPhone Notification h iPhone Spotlight iPhone App iPhone App.
05 7-15 i0S 7-15 i0S 5,6 i0S 7-15
20pt a0pt 57pt

2

iPad Notifications iPad Settings iPad Spotlight iPad Spotlight iPad App iPad App iPad Pro (12.9-inch) App
i0S 7-15 i0S7-15 i0S 7-15 i0S5,6 i0S 5,6 i0S 7-15 i0S 9-15
20pt 29pt 40pt 50pt 72pt 76pt 83.5pt

App Store

i0S
1024pt

234x234px

86x66pK o 92x02px 102x102px
@

38mm 2x 40mm 2x 41mm 2x a4mm 2x 45mm 2x

42mm 2x

pple Watch Apple Watch Apple Watch Apple Watch
Notification Center Companion Settings Home Screen Short Look

assets.xcassets - Applcon

generate app icon: https://appicon.co/#a

Create a Button Button ([ENSEIN) <

import SwiftUI

struct ContentView: View {
@State private var showDetails = false
12 var body: some View {
Text("Hello, world!")
.padding()
Button("Show details") {
showDetails.toggle()

if showDetails{
Image("pokemon")
Text("Good job!!!").bold()

struct ContentView_Previews: PreviewProvider {
static var previews: some View {
ContentView()

}

Create a TextField

TextField ("Placeholder", text: ERID))

import SwiftUI

struct ContentView: View {
@State private var showDetails = false
@State private var pokemonID = "1"
var body: some View {
Text("Hello, world!")
.padding()
Button("Show details") {
showDetails.toggle()

1
J

TextField("pokemon ID", text: $pokemonID).multilineTextAlignment(.center)

if showDetails{
Image("pokemon")
Text("Good job!!!").bold()

26 }
struct ContentView_Previews: PreviewProvider {

static var previews: some View {
ContentView()

Views Library Panel

D
J

.

Controls

seonl] - Button

Color Picker

Date Picker

d E S

Disclosure Group

Edit Button

Form

Gauge

Group Box

L\JIIL'-I-U"_I VYV ALWwiIVJI e

Steps to Open the Library Panel
1.0pen Your Xcode Project: Launch Xcode and open your
SwiftUl view file.
2.Navigate to Menu: Go to View -> Show Library in the Xcode
menu bar.

1. Alternatively, use the shortcut Shift + Command + L.

0= T @ © ™

Button

A control that initiates an action.
struct Button<Label> where Label : View

You create a button by providing an action and a label. The action is
either a method or closure property that does something when a user
clicks or taps the button. The label is a view that describes the
button’s action — for example, by showing text, an icon, or both:

Button(action: signIn) {
Text("Sign In")
}

For the common case of text-only labels, you can use the convenience
initializer that takes a title string or LocalizedStringKey as its first
parameter, instead of a trailing closure:

Button("Sign In", action: signIn)

How the user activates the button varies by platform:

e IniOS and watchOS, the user taps the button.

e In macOS, the user clicks the button.

e IntvOS, the user presses “select” on an external remote, like the
Siri Remote, while focusing on the button.

The appearance of the button depends on factors like where you place
a2 wvaoww dvuvawuwase g bk Ak

An Overview of SwiftUl

» First announced at Apple’s Worldwide Developer Conference in 2019,
SwiftUl is an entirely new approach to developing apps for all Apple
operating system platforms.

* Many of the advantages of SwiftUl originate from the fact that it is both
declarative and data driven, topics which will be explained in this class.

Page = 6

Before SwiftUl

= Up until the introduction of SwiftUl, iOS apps were built entirely using
UIKit together with a collection of associated frameworks that make up
the iOS Software Development Kit (SDK).

= Back in that time, Xcode includes a tool called Interface Builder. :

— The user interface layout of a scene is designed within Interface Builder by
dragging components (such as buttons, labels, text fields and sliders).

— Any components that need to respond to user events (such as a button tap or
slider motion) are connected to methods in the app source code where the
event is handled.

Page =7

SwiftUl is Data Driven

= SwiftUl provides several ways to bind the data model of an app to the
user interface components and logic that provide the app functionality.

» The data model publishes data variables to which other parts of the app
can then subscribe. Using this approach, changes to the published data
are automatically reported to all subscribers.

Page = 8

Summary

= SwiftUl introduces a different approach

to app development than that offered AR BB

by UIKit and Interface Builder. struct (ContentView: view {i i
@State private var showDetails = false
— SwiftUl allows the user interface to var body: some View {
. . . Text("Hello, world!")
be declared in descriptive terms and .padding()
then does all the work of deciding Button("Show.clietails?(§
howD i
the best way to perform the , oipeaRs-regere

rendering when the app runs.
if showDetails{

— |t is also data driven in that data Image ("pokemon")
changes drive the behavior and UCEEASHESTEC) aCH U ol Gl
appearance of the app. This is
achieved through a publisher and
SUbscriber mOdel- struct ContentView_Previews: PreviewProvider {

static var previews: some View {
ContentView()

}

Page = 9

SwiftUl Architecture

App

Scene Scene

View View View View

View View

App: the app
Scene: Usually a window takes up the entire device screen
Views: buttons, labels, and text fields...

Page = 10

The Anatomy of a Basic SwiftUl Project

‘| myfirstproject

v ww Shared
3 myfirstprojectApp.swift
3 ContentView.swift
(Z Assets.xcassets

Page = 11

The myfirstprojectApp.swift File

» This file contains the declaration for the App objects

import SwiftUI

@main
struct myfirstprojectApp: App {
var body: some Scene {

WindowGroup {
ContentView()

As implemented, the declaration returns a Scene consisting of a
WindowGroup containing the View defined in the ContentView.swift file.
Note that the declaration is prefixed with @main. This indicates to

SwiftUl that this is the entry point for the app when it is launched on a
device

The ContentView.swift File

» This file serves as the initial SwiftUl View, which by default displays the
first screen that users see upon launching the app. It acts as the primary
workspace for most of your SwiftUl development tasks. Initially, it comes
pre-populated with a single Text view that displays the message 'Hello,
world!".

import SwiftUI

struct ContentView: View {
@State private var showDetails = false
@State private var pokemonID = "1"
var body: some View {
Text("Hello, world!")
.padding()
Button("Show details") {
showDetails.toggle()
}
TextField("pokemon ID", text: $pokemonID).multilineTextAlignment(.center)

if showDetails{
Image("pokemon")
Text("Good job!!!").bold()

struct ContentView_Previews: PreviewProvider {
static var previews: some View {
ContentView()
}

Assets.xcassets

* The Assets.xcassets folder contains the asset catalog that is used to store
resources used by the app such as images, icons and colors.

& N O QA

v [myfirstapp
v myfirstapp
myfirstappApp
ContentView
() Assets
> @ Preview Content

Page = 14

g O B B < ContentView Assets

myfirstapp myfirstapp Assets Applcon

AccentColor Applcon

B Appicon

2x 3x

iPhone Notification
20pt

F 4 F 4
2x 3x

iPhone Spotlight
40pt

iPad Notifications
20pt

iPad Spotlight
40pt

myfirstappApp

iPhone App

o5 N
LW <N
A - £
F 4 F N
1x 2x 3x
iPhone Settings
29pt
X
A P ;
e |)
1x 2x
iPhone App
i0S 5,6
57pt
e _xr/ :
4
bhﬁ
Y
F 4
3x
3
&
F 4
1x 2x
iPad Settings
29pt
T “/
\ ©
[%)) b
r 4
1x 2x

iPad Spotlight
i0S 5,6
50pt

Add Image

import SwiftUI

struct ContentView: View {
@State private var showDetails = false
12 var body: some View {
Text("Hello, world!")
.padding()
Button("Show details") {
showDetails.toggle()

[myfirstproject) & Shared) @ Assets.xcassets)

i i AccentColor Applcon

Applcon
A p1
A r2
B o3
Bl 4

E= pokemon

if showDetails{
Image("pokemon")
Text("Good job!!!").bold()

struct ContentView_Previews: PreviewProvider {
static var previews: some View {
ContentView()

Page = 15

Creating a Basic View

import SwiftUI

struct ContentView: View {
var body: some View {
Text ("Hello, world!")
.padding ()

}

struct ContentView Previews: PreviewProvider ({
static var previews: some View {
ContentView ()

}

The view is named ContentView and is declared as conforming to the
View protocol. It also includes the mandatory body property which, in
turn contains an instance of the built-in Text view component which is
initialized with a string which reads “Hello, world!”.

The second structure in the file is needed to create an instance of
ContentView so that it appears in the preview canvas, a topic which
will be covered in detail in later chapters.”

= SwiftUl includes three stack layout views in the form of VStack (vertical),
HStack (horizontal) and ZStack (views are layered on top of each other).

struct ContentView: View {
var body: some View {
HStack ({
Image (systemName: "goforward.1l0")
Image (systemName: "goforward.1l5")
Image (systemName: "goforward.30")

10 JA15) 30

Page = 17

VStack {
Text ("Financial Results")
s font(TtErEle)

HStack {
Text ("Ql Sales")
.font (.headline)

VStack {
Text ("January")

Text ("February")
Text ("March")
}

VStack {
Text ("$1000")
Text (%$200")
Text ("$3000")

Page = 18

Financial Results

January $1000
Q1 Sales February $200
March $3000

Spacers, Alignment and Padding

» To add space between views, SwiftUl includes the Spacer component.
When used in a stack layout, the spacer will flexibly expand and contract
along the axis of the containing stack (in other words either horizontally or
vertically) to provide a gap between views positioned on either side, for
example:

HStack (alignment: .top) {

Text ("Ql Sales")
.font (.headline)
Spacer ()
VStack (alignment: .leading) {
Text ("January")
Text ("February")
Text ("March")

}
Spacer ()

Page = 19 m
nﬂ:

Spacers, Alignment and Padding

» |n terms of aligning the content of a stack, this can be achieved by
specifying an alignment value when the stack is declared, for example:

VStack(alignment: .center) {

Text ("Financial Results")
.font (.title)

= Alignments may also be specified with a corresponding spacing value:

VStack(alignment: .center, spacing: 15) ({

Text ("Financial Results")
.font(.title)

Page = 20

Exercise: Build an App to display Pokemons (Pokédex version 1)

Exercise: Create a Pokémon Display App (Pokédex Version 1)
Objective:
In this exercise, you will build an iOS app that allows users to
view Pokémon images based on their ID numbers.
Instructions:
1.Download Resources: Download the Pokemon.zip file from
the class website.
2.Unzip the File: Extract the contents of the Pokemon.zip file to
access the Pokémon profile pictures.
3.Add to Xcode: Import the unzipped Pokémon profile pictures
into your Xcode project.
4.App Development: Create an app that performs the
following functions:

1. Allows users to input a Pokémon ID number.

2. Displays the corresponding Pokémon image based on

the entered ID.

By the end of this exercise, you should have a functional app
that serves as a basic Pokédex, allowing users to view Pokémon
based on their ID numbers.

Page = 21

Bonus: Display an extra rare star (rare.png) for pokemon with ID 150 and 151

® e

& A

Page = 22

