
CSC 496: iOS App Development
SwiftUI

Si Chen (schen@wcupa.edu)

Class3

Page § 2

Build the first App

assets.xcassets à AppIcon

generate app icon: https://appicon.co/#app-icon

Page § 3

Create a Button

Page § 4

Create a TextField

Page § 5

Views Library Panel

Steps to Open the Library Panel
1.Open Your Xcode Project: Launch Xcode and open your
SwiftUI view file.
2.Navigate to Menu: Go to View -> Show Library in the Xcode
menu bar.

1. Alternatively, use the shortcut Shift + Command + L.

Page § 6

An Overview of SwiftUI

§ First announced at Apple’s Worldwide Developer Conference in 2019,
SwiftUI is an entirely new approach to developing apps for all Apple
operating system platforms.

§ Many of the advantages of SwiftUI originate from the fact that it is both
declarative and data driven, topics which will be explained in this class.

Page § 7

Before SwiftUI

§ Up until the introduction of SwiftUI, iOS apps were built entirely using
UIKit together with a collection of associated frameworks that make up
the iOS Software Development Kit (SDK).

§ Back in that time, Xcode includes a tool called Interface Builder. :
– The user interface layout of a scene is designed within Interface Builder by

dragging components (such as buttons, labels, text fields and sliders).
– Any components that need to respond to user events (such as a button tap or

slider motion) are connected to methods in the app source code where the
event is handled.

Page § 8

SwiftUI is Data Driven

§ SwiftUI provides several ways to bind the data model of an app to the
user interface components and logic that provide the app functionality.

§ The data model publishes data variables to which other parts of the app
can then subscribe. Using this approach, changes to the published data
are automatically reported to all subscribers.

Page § 9

Summary

§ SwiftUI introduces a different approach
to app development than that offered
by UIKit and Interface Builder.
– SwiftUI allows the user interface to

be declared in descriptive terms and
then does all the work of deciding
the best way to perform the
rendering when the app runs.

– It is also data driven in that data
changes drive the behavior and
appearance of the app. This is
achieved through a publisher and
subscriber model.

Page § 10

SwiftUI Architecture

App: the app
Scene: Usually a window takes up the entire device screen
Views: buttons, labels, and text fields…

Page § 11

The Anatomy of a Basic SwiftUI Project

Page § 12

The myfirstprojectApp.swift File

§ This file contains the declaration for the App objects

As implemented, the declaration returns a Scene consisting of a
WindowGroup containing the View defined in the ContentView.swift file.
Note that the declaration is prefixed with @main. This indicates to
SwiftUI that this is the entry point for the app when it is launched on a
device

Page § 13

The ContentView.swift File

§ This file serves as the initial SwiftUI View, which by default displays the
first screen that users see upon launching the app. It acts as the primary
workspace for most of your SwiftUI development tasks. Initially, it comes
pre-populated with a single Text view that displays the message 'Hello,
world!'.

Page § 14

Assets.xcassets

§ The Assets.xcassets folder contains the asset catalog that is used to store
resources used by the app such as images, icons and colors.

Page § 15

Add Image

Page § 16

Creating a Basic View

The view is named ContentView and is declared as conforming to the
View protocol. It also includes the mandatory body property which, in
turn contains an instance of the built-in Text view component which is
initialized with a string which reads “Hello, world!”.

The second structure in the file is needed to create an instance of
ContentView so that it appears in the preview canvas, a topic which
will be covered in detail in later chapters.”

Page § 17

SwiftUI Stacks

§ SwiftUI includes three stack layout views in the form of VStack (vertical),
HStack (horizontal) and ZStack (views are layered on top of each other).

Page § 18

SwiftUI Stacks

Page § 19

Spacers, Alignment and Padding

§ To add space between views, SwiftUI includes the Spacer component.
When used in a stack layout, the spacer will flexibly expand and contract
along the axis of the containing stack (in other words either horizontally or
vertically) to provide a gap between views positioned on either side, for
example:

Page § 20

Spacers, Alignment and Padding

§ In terms of aligning the content of a stack, this can be achieved by
specifying an alignment value when the stack is declared, for example:

§ Alignments may also be specified with a corresponding spacing value:

Page § 21

Exercise: Build an App to display Pokemons (Pokédex version 1)

Exercise: Create a Pokémon Display App (Pokédex Version 1)
Objective:
In this exercise, you will build an iOS app that allows users to
view Pokémon images based on their ID numbers.
Instructions:
1.Download Resources: Download the Pokemon.zip file from
the class website.
2.Unzip the File: Extract the contents of the Pokemon.zip file to
access the Pokémon profile pictures.
3.Add to Xcode: Import the unzipped Pokémon profile pictures
into your Xcode project.
4.App Development: Create an app that performs the
following functions:

1. Allows users to input a Pokémon ID number.
2. Displays the corresponding Pokémon image based on

the entered ID.
By the end of this exercise, you should have a functional app
that serves as a basic Pokédex, allowing users to view Pokémon
based on their ID numbers.

Bonus: Display an extra rare star (rare.png) for pokemon with ID 150 and 151

Page § 22

