Cla552

CSC 436: i0S App Development
Swift Fundamentals: Operators, Control Flow

and Xcode

Si Chen (schen@wcupa.edu)

Constants, Variables, and Data Types

» Constants and variables must be declared before they're used. You
declare constants with the let keyword and variables with
the var keyword.

let maximumNumberOfLoginAttempts = 10
var currentLoginAttempt = 0

= You can declare multiple constants or multiple variables on a single line,
separated by commas:

var x = 0.0, y = 0.0, z = 0.0

Page = 2

Type Annotations

* You can provide a type annotation when you declare a constant or
variable, to be clear about the kind of values the constant or variable can
store.

= Write a type annotation by placing a colon after the constant or variable
name, followed by a space, followed by the name of the type to use.

var welcomeMessage: String

Page = 3

Printing Constants and Variables

» Swift uses string interpolation to include the name of a constant or
variable as a placeholder in a longer string, and to prompt Swift to replace
it with the current value of that constant or variable.

= Wrap the name in parentheses and escape it with a backslash before
the opening parenthesis:

print("The current value of friendlyWelcome is \(friendlyWelcome)")
// Prints "The current value of friendlyWelcome is Bonjour!"

Page = 4

» Unlike many other languages, Swift doesn’t require you to write a
semicolon (;) after each statement in your code, although you can do so if
you wish.

» However, semicolons are required if you want to write multiple separate
statements on a single line:

let cat = "&"; print(cat)
71 Pripts "

Page = 5

Most Common Types in Swift

Page = 6

Name

Integer

Double

Boolean

String

Type

Purpose

Represents whole numbers,
or integers

Represents numbers
requiring decimal points, or
real numbers

Represents or
values

Represents text

Example

Type Inference

* You may have noticed that you don’t have to specify the type of value
when you declare a constant or variable. This is called type inference.
Swift uses type inference to make assumptions about the type based on
the value assigned to the constant or variable.

let "San Francisco”

let 3.1415927

let String

let Double 3.1415927
Page =7

Create your own type

import UIKit

struct Car{
var make:String
var model:String
var year:Int

var ¢ = Car(make: "BMwW",
model: "X3", year:
2022)
10 print(c.make])

[

Page = 8

» Operators are the symbols that make your code work. You'll use them to
perform actions like check, change, or combine values.

— Assign a Value
let “"Luke”

— Basic Arithmetic

var 3 x 8

var 100 / 4

Page = 9

— Compound Assignment

I
N N O W

— Numeric Type Conversion

let 3

let 3
let 0.1415927 let 0.1415927
let Double o+
let -
In the revised code, Double(x) creates a
s new Double value from the Int value x,
Page = 10 enabling the compiler to add it to y and

assign the result to pi.

Control Flow

» | ogical and Comparison Operators

Page = 11

Operator

Type

Comparison

Comparison

Comparison

Comparison

Comparison

Comparison

Logical

Logical

Logical

Description

Two items must be equal.
The values must not be equal to each other.

Value on the left must be greater than the value
on the right.

Value on the left must be greater than or equal to
the value on the right.

Value on the left must be less than the value on
the right.

Value on the left must be less than or equal to
the value on the right.

AND—The conditional statement on the left
and right must be

OR—The conditional statement on the left or
right must be

NOT—Returns the logical opposite of the
conditional statement immediately following the
operator

if Statements

let 100
if 100
print(”"The water is boiling.”

Console Output:

Page = 12

If-else if-else Statements

var 2

if 1
print(”"Congratulations, you won the gold medal!”
else if 2

print(”You came in second place, you won a silver medal!”
else
print(”You did not win a gold or silver medal.”

Page = 13

Boolean Values

var false

if !
print(”It 1s not snowing.”

Console Output:

West
be‘aer
University
Wy

Page = 14 Ulﬁi'
[l

Switch Statement

let 2
switch
case 0
print("Missing something?"
case 1
print(”Unicycle”
case 2
print(”"Bicycle”
case 3
print(”"Tricycle”
case 4
print(”Quadcycle”
default
print(”"That’s a lot of wheels!”

Page = 15

Switch Statement

* Any given case statement can also evaluate multiple conditions at once.

1e-t IIZII

switch
case "a", "e", M"i",6 "o", "u"

print(”"This character i1s a vowel.”
default

print(”"This character is a consonant.”

Page = 16

Switch Statement

= When working with numbers, you can use interval matching to check for
inclusion in a range

switch
case 0...9
print(”"Your destination is close.”
case 10...99
print(”"Your destination 1s a medium distance from here.”
case 100...999
print(”"Your destination is far from here.”
default
print(”Are you sure you want to travel this far?”

Page = 17

Exercise 1: Grade Calculation Using if-else

= Problem Description:

Write a Swift program that takes a student's numerical grade (0 to 100) as input
and outputs the corresponding letter grade based on the following criteria:

* A:90-100

* B:80-89

e (C:70-79

* D:60-69

* F:Below 60

= Sample Code Skeleton:

// Your code here
numericalGrade = 95

// Implement if-else logic here to determine letter grade

Page = 18

Exercise 2: Grade Calculation Using switch

= Problem Description:

Write a Swift program that takes a student's numerical grade (0 to 100) as input
and outputs the corresponding letter grade based on the following criteria:

* A:90-100
* B:80-89

e (C:70-79

* D:60-69

* F:Below 60

= Sample Code Skeleton:

import Foundation

// Your code here
let numericalGrade = 95

// Implement switch logic here to determine letter grade

Page = 19

Ternary Conditional Operator

var Int
let 15
let 4

Page = 20

Exercise 3: Evaluate Number Using Ternary Conditional Operator

= Problem Description:

Write a Swift program that evaluates if a given integer is even or odd using the
Ternary Conditional Operator.

Sample Code Skeleton:

import Foundation

// Pre—-define an integer
let number = 10

// Use Ternary Conditional Operator to evaluate the number
let result: String = // Your code here

print("The number is \(result).")

Please replace the comment // Your code here with the
appropriate use of the Ternary Conditional Operator to check

page » 21 whether the number is even or odd.

= How to navigate Xcode projects

= How to use the Project navigator, debug area, assistant editor, and

version editor

Page = 22

Welcome to Xcode

. Create a new Xcode project

Create an app for iPhone, iPad, Mac, Apple Watch, or Apple TV.

Clone an existing project

Start working on something from a Git repository.

Open a project or file
Open an existing project or file on your Mac.

v Show this window when Xcode launches

No Recent Projects

code Interface

eve M B P> [LearningXcode LearningXcode) 8 iPhone 12 Pro 7 B
7 Q P @ Liaringioose) 18 Leamgioots) 3 iewcontoter) I ViewGomrober loolbar area >

5 Identity and Type
v LearningXcode PID 48749 @ ®

=) CPU 0 Y ".‘ € Name ViewController.swift

: Type Default - Swift Source e
Memory 70 MB
| Location Relative to Group 2]
& Disk Zero KE . . ViewController.swift £
import UIKit Full Path /Users/Shared/
@ Network Zero KB/s LearningXcode/
ss ViewCo oy s 3 ow . LearningXcode/
P o class ViewController: UIViewController { o o ©
’ [E3 0 ViewController.viewDidLo... override func viewDidLoad() { On Demand Resource Tags
¥ 33 static UlApplicationDele [12] super.viewDidLoad() Thread 1: breakpoint 1.1 (1)
[34 static AppDelegate.$ma. y t t fter loadi the €
3 35 main } Target Membership
: 15 |
36 start_sim LearningXcode
> © Thread 2 }
.
G- Editor area
> @ Thread 4
Text Setting
> @ com.apple.uikit.eventfetch-th
>) Thread 6 Text Encoding No Explicit Encoding a
> @ Thread 7 Line Endings o
>) Thread 8 Indent Using Spaces e
Widths a5 43
Tab Indent

Wrap lines

3 Navigator area

Inspector area

[=3 S LearningXcode) () Thread 1) [0 ViewController.viewDidLoad() -

Debug area

® D0

J self = (LearningXcode ViewController) 0x00000001410235e0 (11db)

BOB Au: ®

Page = 23

.Xcodeproj Project file

= xcodeproj is the project file, which includes all the settings for your project
and its targets. Each target is a product that Xcode can build from the

p I’Oj eCl.
> 2
-
VVVVVVVVVVVVVVV
LearningXcode
oooooooooooooo
e
V]
-
e
nnnnnnnnnnnnnnnnnnnnnnn
"y
[¥]
uuuuuuuuuuuuuuuu
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Page = 24

Building, Running, and Debugging an App

== My Mac (Designed for iPad)

Click the Run button, or use the keyboard shortcut
(Command-R) to begin launching the app in
€8 iPad (9th generation) Simulator.

& iPad Air (4th generation)

Any iOS Device (arm64)

& iPad Pro (9.7-inch)
@ iPad Pro (11-inch) (3rd generation)
& iPad Pro (12.9-inch) (5th generation)
& iPad mini (6th generation)
& iPhone 8
& iPhone 8 Plus
e iPhone 11
& iPhone 11 Pro
& iPhone 11 Pro Max
& iPhone 12
& iPhone 12 Pro
e iPhone 12 Pro Max
& iPhone 12 mini
& iPhone 13
v & iPhone 13 Pro
& iPhone 13 Pro Max
& iPhone 13 mini
e iPhone SE (2nd generation)
@ iPod touch (7th generation)

Add Additional Simulators...

Page = 25

Debugging an Application

= When you run an app as described above, either on Simulator or on your
device, Xcode will connect the app to its debugger. This allows you to
watch the execution of your code in real time, stop code execution using

breakpoints, print information from your code to the console, and much
more.

= As you proceed through this course, you’ll encounter three types of
Issues: warnings, compiler errors, and bugs

Warnings:
« Writing code that never gets executed
« Creating a variable that never changes

« Using code that’s out of date (also known as
deprecated code)

Initialization of immutable value 'x' was never used; consider replacing with assignment to '_' or removing it

Page = 26

Debugging an Application

Compiler Errors: an error prevents the code from ever being executed.
Simulator won'’t even launch if your code has an error.

super.viewDidLoad © Function is unused

navigationController.title = "Debugging" 2 © Value of optional type 'UINavigationController?' must be unwrapped to refer to member 'title...

Bugs: the hardest issue to track down. A bug is an error that occurs
while running the program, resulting in a crash or incorrect output.
Finding bugs can involve some time and some real detective work.

var "Tammy”, "“Cole”
removeFirst
removeFirst
Page » 27 removeFirst

Build the first A

B8 < @ Assets. t &Y Swift

2 myfirstproject) & Shared) @ Assets.xcassets) [l Applcon

AccentColor Appicon
Applcon
[]
Hr2
Bes3
B pa

= pokemon

iPhone Notification h iPhone Spotlight iPhone App iPhone App.
05 7-15 i0S 7-15 i0S 5,6 i0S 7-15
20pt a0pt 57pt

2

iPad Notifications iPad Settings iPad Spotlight iPad Spotlight iPad App iPad App iPad Pro (12.9-inch) App
i0S 7-15 i0S7-15 i0S 7-15 i0S5,6 i0S 5,6 i0S 7-15 i0S 9-15
20pt 29pt 40pt 50pt 72pt 76pt 83.5pt

App Store

i0S
1024pt

234x234px

86x66pK o 92x02px 102x102px
@

38mm 2x 40mm 2x 41mm 2x a4mm 2x 45mm 2x

42mm 2x

pple Watch Apple Watch Apple Watch Apple Watch
Notification Center Companion Settings Home Screen Short Look

assets.xcassets - Applcon

generate app icon: https://appicon.co/#a

Create Button

To create a button with a string title you would start with code like this:

Button("Button title") {

print("Button tapped!")

Page = 29

Create Button

import SwiftUI

struct ContentView: View {
@State private var showDetails = false
var body: some View {
Text("Hello, world!")
.padding()
Button("Show details") {
showDetails.toggle()

if showDetails{

Image("pokemon")
Text("Good job!!!").bold()

struct ContentView_Previews: PreviewProvider {
static var previews: some View {
ContentView()

Page = 30

Add Image

import SwiftUI

struct ContentView: View {
@State private var showDetails = false
12 var body: some View {
Text("Hello, world!")
.padding()
Button("Show details") {
showDetails.toggle()

[myfirstproject) & Shared) @ Assets.xcassets)

i i AccentColor Applcon

Applcon
A p1
A r2
B o3
Bl 4

E= pokemon

if showDetails{
Image("pokemon")
Text("Good job!!!").bold()

struct ContentView_Previews: PreviewProvider {
static var previews: some View {
ContentView()

Page = 31

Create TextField

import SwiftUI

struct ContentView: View {
@State private var showDetails = false
@State private var pokemonID = "1"
var body: some View {
Text("Hello, world!")
.padding()
Button("Show details") {
showDetails.toggle()

}
TextField("pokemon ID", text: $pokemonID).multilineTextAlignment(.center)

if showDetails{
Image("pokemon")
Text("Good job!!!").bold()

26 }
struct ContentView_Previews: PreviewProvider {

static var previews: some View {
ContentView()

Page = 32

Exercise: Build an App to display Pokemons

Hello, world!

Show Details

Hello, world!

Show Details

Good job!!!

Good job!!!

Hello, world!

Show Details

5

|
e/

Good job!!!

Page = 33

Hello, world!

Show Details

3

o
Good job!!!

Hello, world!

Show Details

Good job!!!

® e

& A

Page = 34

