
CSC 496: iOS App Development
Swift Fundamentals: Operators, Control Flow

and Xcode

Si Chen (schen@wcupa.edu)

Class2

Page § 2

Constants, Variables, and Data Types

§ Constants and variables must be declared before they’re used. You
declare constants with the let keyword and variables with
the var keyword.

§ You can declare multiple constants or multiple variables on a single line,
separated by commas:

Page § 3

Type Annotations

§ You can provide a type annotation when you declare a constant or
variable, to be clear about the kind of values the constant or variable can
store.

§ Write a type annotation by placing a colon after the constant or variable
name, followed by a space, followed by the name of the type to use.

Page § 4

Printing Constants and Variables

§ Swift uses string interpolation to include the name of a constant or
variable as a placeholder in a longer string, and to prompt Swift to replace
it with the current value of that constant or variable.

§ Wrap the name in parentheses and escape it with a backslash before
the opening parenthesis:

Page § 5

Semicolons

§ Unlike many other languages, Swift doesn’t require you to write a
semicolon (;) after each statement in your code, although you can do so if
you wish.

§ However, semicolons are required if you want to write multiple separate
statements on a single line:

Page § 6

Most Common Types in Swift

Page § 7

Type Inference

§ You may have noticed that you don’t have to specify the type of value
when you declare a constant or variable. This is called type inference.
Swift uses type inference to make assumptions about the type based on
the value assigned to the constant or variable.

Page § 8

Create your own type

Page § 9

Operators

§ Operators are the symbols that make your code work. You'll use them to
perform actions like check, change, or combine values.
– Assign a Value

– Basic Arithmetic

Page § 10

Operators

– Compound Assignment

– Numeric Type Conversion

In the revised code, Double(x) creates a
new Double value from the Int value x,
enabling the compiler to add it to y and
assign the result to pi.

Page § 11

Control Flow

§ Logical and Comparison Operators

Page § 12

if Statements

Page § 13

If-else if-else Statements

Page § 14

Boolean Values

Page § 15

Switch Statement

Page § 16

Switch Statement

§ Any given case statement can also evaluate multiple conditions at once.

Page § 17

Switch Statement

§ When working with numbers, you can use interval matching to check for
inclusion in a range

Page § 18

Exercise 1: Grade Calculation Using if-else

§ Problem Description:

Write a Swift program that takes a student's numerical grade (0 to 100) as input
and outputs the corresponding letter grade based on the following criteria:

• A: 90-100

• B: 80-89

• C: 70-79

• D: 60-69

• F: Below 60

§ Sample Code Skeleton:

Page § 19

Exercise 2: Grade Calculation Using switch

§ Problem Description:

Write a Swift program that takes a student's numerical grade (0 to 100) as input
and outputs the corresponding letter grade based on the following criteria:

• A: 90-100

• B: 80-89

• C: 70-79

• D: 60-69

• F: Below 60

§ Sample Code Skeleton:

Page § 20

Ternary Conditional Operator

Page § 21

Exercise 3: Evaluate Number Using Ternary Conditional Operator

§ Problem Description:

Write a Swift program that evaluates if a given integer is even or odd using the
Ternary Conditional Operator.

Sample Code Skeleton:

Please replace the comment // Your code here with the
appropriate use of the Ternary Conditional Operator to check
whether the number is even or odd.

Page § 22

Xcode

§ How to navigate Xcode projects
§ How to use the Project navigator, debug area, assistant editor, and

version editor

Page § 23

Xcode Interface

Page § 24

.xcodeproj Project file

§ .xcodeproj is the project file, which includes all the settings for your project
and its targets. Each target is a product that Xcode can build from the
project.

Page § 25

Building, Running, and Debugging an App

Click the Run button, or use the keyboard shortcut
(Command-R) to begin launching the app in
Simulator.

Page § 26

Debugging an Application

§ When you run an app as described above, either on Simulator or on your
device, Xcode will connect the app to its debugger. This allows you to
watch the execution of your code in real time, stop code execution using
breakpoints, print information from your code to the console, and much
more.

§ As you proceed through this course, you’ll encounter three types of
issues: warnings, compiler errors, and bugs

Warnings:
• Writing code that never gets executed
• Creating a variable that never changes
• Using code that’s out of date (also known as

deprecated code)

Page § 27

Debugging an Application

Compiler Errors: an error prevents the code from ever being executed.
Simulator won’t even launch if your code has an error.

Bugs: the hardest issue to track down. A bug is an error that occurs
while running the program, resulting in a crash or incorrect output.
Finding bugs can involve some time and some real detective work.

Page § 28

Build the first App

assets.xcassets à AppIcon

generate app icon: https://appicon.co/#app-icon

Page § 29

Create Button

To create a button with a string title you would start with code like this:

Page § 30

Create Button

Page § 31

Add Image

Page § 32

Create TextField

Page § 33

Exercise: Build an App to display Pokemons

Page § 34

